Chọn phát biểu sai trong các phát biểu sau:
A. Hình gồm các điểm nằm trên đường tròn và các điểm nằm trong đường tròn đó là hình tròn.
B. Dây cung không đi qua tâm là bán kính của đường tròn đó.
C. Hai điểm A và B của một đường tròn chia đường tròn đó thành hai cung. Đoạn thẳng nối hai mút của một cung là dây.
D. Dây cung đi qua tâm là đường kính của đường tròn đó.
Đáp án là B
Ta thấy A, C, D đúng.
B sai vì dây cung không thể là bán kính của đường tròn (theo định nghĩa dây cung)
Cho ∠xOy và ∠yOz là hai góc kề bù. Biết ∠xOy = và tia Ot là tia phân giác của ∠yOz. Tính số đo góc xOt.
Cho ∠AOB = và tia OB là tia phân giác của góc AOC . Khi đó góc AOC là:
Cho ∠AOB = , vẽ tia OC sao cho tia OB nằm giữa hai tia OA và OC đồng thời ∠COB = . Tính số đo ∠AOC
Cho ∠AOB = và ∠AOC = sao cho ∠AOB và ∠AOC không kề nhau. Chọn câu sai:
Cho góc AOB và tia phân giác OC của góc đó. Vẽ tia phân giác OM của góc BOC . Biết ∠BOM = . Tính số đo góc AOB
Cho Ot là phân giác của ∠xOy. Biết ∠xOy = 100°, số đo của ∠xOt là:
Cho góc bẹt ∠xOy. Trên cùng một nửa mặt phẳng bờ xy vẽ các tia Om, On sao cho ∠xOm = (a < 180) và ∠yOn = . Với giá trị nào a của thì tia On là tia phân giác của ∠yOm
Cho ba tia chung gốc Ox; Oy; Oz thỏa mãn ∠xOy = ; ∠yOz = ; ∠zOx = . Chọn câu đúng:
Cho ∠AOC = . Vẽ tia OB sao cho OA là tia phân giác của ∠BOC . Tính số đo của ∠AOB và ∠BOC
Cho ∠xOy và ∠yOy' là hai góc kề bù. Biết ∠xOy = , số đo của ∠yOy' là: