Cho 7 chữ số 0; 8; 2; 3; 9; 5; 6. Viết được bao nhiêu số tự nhiên có 5 chữ số khác nhau từ 7 chữ số trên
A. 16 807 số;
B. 5040 số;
C. 2160 số;
D. 24 số.
Đáp án đúng là: C
Các số tự nhiên có năm chữ số khác nhau có dạng \(\overline {abcde} \) với a ≠ 0 và \(a \ne b \ne c \ne d \ne e\)
Vì a ≠ 0 nên a chỉ có thể là một trong các số 8; 2; 3; 9; 5; 6 nên có 6 cách chọn a.
b có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 1 chữ số a đã chọn nên có 6 cách chọn b.
c có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 2 chữ số a và b đã chọn nên có 5 cách chọn c.
d có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 3 chữ số a, b và c đã chọn nên có 4 cách chọn d.
e có thể là một trong các số 0; 8; 2; 3; 9; 5; 6 và trừ đi 4 chữ số a, b, c và d đã chọn nên có 3 cách chọn e.
Vậy viết được tất cả \(6 \times 6 \times 5 \times 4 \times 3 = 2160\) (số).
Trong một số tự nhiên, chữ số 5 có giá trị bằng 500. Chữ số 5 đứng ở hàng nào trong số tự nhiên đó?
Một số có tổng giá trị các chữ số của nó như sau: \(3 \times 100\,000 + 7 \times 1000 + 6 \times 100 + 5\) . Số đó là
Cho 4 chữ số 0; 3; 6; 8, Viết được bao nhiêu số có ba chữ số từ các chữ số trên?
Số tự nhiên gồm chín chục triệu, bốn triệu, năm chục nghìn, tám nghìn, một đơn vị và sáu trăm là