Cả 3 và -3 đều có chung các bội dạng \[{\rm{3}}{\rm{.m}}\](\[{\rm{m}}\; \in \]\(\mathbb{Z}\) ), nghĩa là: \[0{\rm{ }};{\rm{ - }}3{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ - }}6{\rm{ }};{\rm{ }}6{\rm{ }};{\rm{ - }}9{\rm{ }};{\rm{ }}9{\rm{ }}; \ldots \]
Chẳng hạn, năm bội của 3 và – 3 là :\[3{\rm{ }};{\rm{ }}6{\rm{ }};{\rm{ }}9{\rm{ }};{\rm{ }}12{\rm{ }};{\rm{ }}15\].
Hãy tìm các số \[{\rm{x}} \in {\rm{B}}\left( {{\rm{12}}} \right)\]và \[{\rm{20 < x < 50}}\]
Chứng tỏ rằng số có dạng \(\overline {{\rm{aaa}}} \) là bội của 37