Muốn tìm một bội của 2, (-2) ta nhân 2, (-2) với một số nguyên nào đó. Chẳng hạn:
Năm bội của 2 là : \[2{\rm{ }}.{\rm{ }}1{\rm{ }} = 2;{\rm{ }}2{\rm{ }}.{\rm{ }}\left( { - 1} \right){\rm{ }} = {\rm{ - }}2;{\rm{ }}2{\rm{ }}.{\rm{ }}2{\rm{ }} = 4;{\rm{ }}2.{\rm{ }}\left( { - 2} \right){\rm{ }} = {\rm{ - }}4;{\rm{ }}2{\rm{ }}.{\rm{ }}3{\rm{ }} = {\rm{ }}6.\]
Năm bội của -2 là :\[ - 2{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ - }}4{\rm{ }};{\rm{ }}4{\rm{ }};{\rm{ - }}6\].
Tổng quát: Các bội của 2 và -2 có dạng là \[{\rm{2}}{\rm{.q}}\]với \[{\rm{q}} \in \]\(\mathbb{Z}\): \[0{\rm{ }};{\rm{ - }}2{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ - }}4{\rm{ }};{\rm{ }}4{\rm{ }};{\rm{ - }}6{\rm{ }};{\rm{ }}6{\rm{ }};{\rm{ - }}8{\rm{ }};\;{\rm{ }}8{\rm{ }};{\rm{ }} \ldots \]
Hãy tìm các số \[{\rm{x}} \in {\rm{B}}\left( {{\rm{12}}} \right)\]và \[{\rm{20 < x < 50}}\]
Chứng tỏ rằng số có dạng \(\overline {{\rm{aaa}}} \) là bội của 37