Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\left( {n \in Z;n \ne - 1} \right)\]
Có bao nhiêu giá trị nguyên của n để A có giá trị nguyên.
Trả lời:
Ta có:
\[A = \frac{{n - 5}}{{n + 1}} = \frac{{n + 1 - 6}}{{n + 1}} = \frac{{n + 1}}{{n + 1}} - \frac{6}{{n + 1}} = 1 - \frac{6}{{n + 1}}\]
Để A có giá trị nguyên thì \[6 \vdots \left( {n + 1} \right) \Rightarrow \left( {n + 1} \right) \in U\left( 6 \right) = \left\{ { \pm 1; \pm 2; \pm 3; \pm 6} \right\}\]
Ta có bảng sau:
Vậy có 8 giá trị của n thỏa mãn là 0;−2;1;−3;2;−4;5;−7.
Đáp án cần chọn là: B
Tính nhanh: \[A = \frac{5}{{1.3}} + \frac{5}{{3.5}} + \frac{5}{{5.7}} + ... + \frac{5}{{99.101}}\]
Cho \[A = \frac{{\left( {3\frac{2}{{15}} + \frac{1}{5}} \right):2\frac{1}{2}}}{{\left( {5\frac{3}{7} - 2\frac{1}{4}} \right):4\frac{{43}}{{56}}}}\] và \[B = \frac{{1,2:\left( {1\frac{1}{5}.1\frac{1}{4}} \right)}}{{0,32 + \frac{2}{{25}}}}\]. Chọn đáp án đúng.
Không quy đồng, hãy so sánh hai phân số sau: \[\frac{{37}}{{67}}\] và \[\frac{{377}}{{677}}\]
Sắp xếp các phân số sau: \[\frac{1}{3};\frac{1}{2};\frac{3}{8};\frac{6}{7}\] theo thứ tự từ lớn đến bé.
Rút gọn phân số \[\frac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\] ta được kết quả là: