Cho tam giác DEF có các đường phân giác EM và FN cắt nhau tại S ta có:
A.
B.
C. SD = SE = SF.
D.
+ Vì S là giao điểm của hai đường phân giác EM và FN của tam giác DEF
Suy ra S là giao điểm của ba đường phân giác trong tam giác DEF
Nên DS là tia phân giác của góc EDF
Do đó A đúng, B sai
+ S là giao của ba đường phân giác nên S cách đều ba cạnh của tam giác DEF nên C sai
+ là sai vì tính chất này chỉ có khi S là trọng tâm tam giác DEF và EM là trung tuyến nên D sai.
Chọn đáp án A
Cho tam giác ABC có , các tia phân giác của và cắt nhau tại I. Gọi D, E là chân các đường vuông góc hạ từ I đến các cạnh AB và AC. Khi đó ta có:
Cho tam giác ABC có và . Tia phân giác của góc B cắt AC tại E. Tia phân giác của góc BAH cắt BE ở I. Khi đó tam giác AIE là tam giác
Cho tam giác ABC đều cạnh bằng 10 cm có phân giác AD và đường trung tuyến BE. Gọi I là giao điểm của BE và AD. Độ dài đoạn thẳng DI là:
Cho tam giác ABC có hai đường phân giác CD và BE cắt nhau tại I. Khi đó
Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khi đó ta có
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là một điểm nằm giữa A và M. Khi đó tam giác BDC là tam giác gì?
Cho tam giác ABC, các tia phân giác góc B và A cắt nhau tại điểm O. Qua O kẻ đường thẳng song song BC cắt AB tại M, cắt AC tại N. Cho . Tính MN?