Với a,b là các số tự nhiên, nếu 11a + 2b chia hết cho 8 thì a + 6b chia hết cho số nào dưới đây?
A. 8
B. 12
C. 15
D. 10
Đáp án cần chọn là: A
Xét 11.(a+6.b)=11.a+66.b=(11.a+2b)+64.b
Vì (11.a+2b)⋮8 và 64b⋮8 nên 11.(a+6.b)⋮8.
Do 11 không chia hết cho 8 nên suy ra (a+6.b)⋮8.
Vậy nếu 11a+2b chia hết cho 8 thì a+6b chia hết cho 8.
Khi chia số tự nhiên a cho 12, ta được số dư là 8. Khẳng định nào sau đây đúng?
Cho A = 12 + 15 + 36 + x, x ∈ ℕ. Tìm điều kiện của x để A không chia hết cho 9.
Có tổng M = 75 + 120 + x. Với giá trị nào của x dưới dây thì M ⋮ 3?
Với a,b là các số tự nhiên, nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho số nào dưới đây?