A. \({\ell _1}\)= 32cmvà \({\ell _2}\)= 18cm.
B. \({\ell _1}\)=28cm và \({\ell _2}\)=22cm.
C. \({\ell _1}\)=30cmvà \({\ell _2}\)=20cm.
D. \[{\ell _1}\]=35cm và \({\ell _2}\)=15cm.
+ Chu kì con lắc đơn: \(T = 2\pi \sqrt {\frac{\ell }{k}} \left( {{T^2} \sim \ell } \right)\)
+ Ta có: \(\frac{{T_1^2}}{{T_2^2}} = \frac{{{\ell _1}}}{{{\ell _2}}} \Leftrightarrow \frac{{{\ell _1}}}{{{\ell _2}}} = \frac{{2,{4^2}}}{{1,{8^2}}} = \frac{{16}}{9}\)(1)
+ Chiều dài của con lắc ban đầu: \(\ell = {\ell _1} + {\ell _2} = 50\left( 2 \right)\)
Từ (1) và (2): \({\ell _1} = 32cm;{\rm{ }}{\ell _2} = 18cm\)
Chọn đáp án A
Một con lắc đơn gồm một hòn bi nhỏ khối lượng m, treo vào một sợi dây không giãn, khối lượng dây không đáng kể. Khi con lắc đơn này dao động điều hòa với chu kì 3s thì hòn bi chuyển động trên cung tròn 4cm. Thời gian để hòn bi đi được 2cm kể từ vị trí cân bằng là
Một vật dao động điều hòa thực hiện 5 dao động trong 20 s. Chọn gốc thời gian lúc vật qua vị trí cân bằng. Thời gian ngắn nhất để vật qua vị trí có li độ cực đại kể từ lúc t = 0 là