Tuần này lớp 6A và 6B gồm 40 học sinh nữ và 36 học sinh nam được phân công đi thu gom rác làm sạch bờ biển ở địa phương. Nếu chia nhóm sao cho số học sinh nam và nữ trong các nhóm bằng nhau thì:
a) Có thể chia được thành bao nhiêu nhóm học sinh?
b) Có thể chia nhiều nhất bao nhiêu nhóm học sinh?
a) Để số học sinh nam và nữ trong các nhóm đều bằng nhau nên số nhóm chính là ước chung của 36 và 40
Gọi x là số nhóm học sinh chia được (nhóm)
Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}
Ư(40) = {1; 2; 4; 5; 8; 10; 20; 40}
Do đó ƯC(36; 40) = {1; 2; 4}
Số học sinh nam và nữ trong mỗi nhóm được cho như bảng dưới đây:
Số nhóm | Số nam | Số nữ |
1 | 36 : 1 = 36 | 40 : 1 = 40 |
2 | 36 : 2 = 18 | 40 : 2 = 20 |
4 | 36 : 4 = 9 | 40 : 4 = 10 |
Vậy có thể chia được 1 nhóm; 2 nhóm hoặc 4 nhóm.
b) Số nhóm chia được nhiều nhất là ƯCLN(36; 40)
Vì ƯC(36; 40) = {1; 2; 4} nên ƯCLN(36; 40) = 4.
Vậy có thể chia nhiều nhất 4 nhóm học sinh.
Cho tập Ư(8) = {1; 2; 4; 8} và Ư(20) = {1; 2; 4; 5; 10; 20}. Tập hợp ƯC(8; 20) là:
Sắp xếp các bước tìm ƯCLN của hai hay nhiều số lớn hơn 1 là:
1 – Chọn ra các thừa số nguyên tố chung.
2 – Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất. Tích đó là ƯCLN phải tìm.
3 – Phân tích mỗi số ra thừa số nguyên tố.
Cho các phân số sau: . Có bao nhiêu phân số tối giản trong các phân số trên.
Nếu 9 là số lớn nhất sao cho và thì 9 là ………… của a và b. Chọn câu trả lời đúng nhất.
Muốn tìm tập hợp ước chung chung của hai hay nhiều số tự nhiên, ta thực hiện: