Cho a, b \[ \in \mathbb{Z}\], b ≠ 0, x = \[\frac{a}{b}\]. Nếu a, b khác dấu thì:
A. x = 0;
B. x > 0;
C. x < 0;
D. Cả B, C đều sai.
Đáp án đúng là: C
Ta có x = \[\frac{a}{b}\]; a, b \[ \in \mathbb{Z}\], b ≠ 0; a, b khác dấu thì x < 0.
Vì số hữu tỉ \[\frac{a}{b}\] là phép chia số a cho số b mà hai số nguyên a, b khác dấu nên khi chia cho nhau luôn ra số âm suy ra x < 0).
Số hữu tỉ \[\frac{x}{6}\] không thỏa mãn điều kiện sau \[\frac{{ - 1}}{2} < \frac{x}{6} < \frac{1}{2}\] là:
</>
Kết quả tìm được của \(x\) trong biểu thức \(\frac{1}{2} - x = \frac{1}{2}\) là:
Sắp xếp các số hữu tỉ \[\frac{{ - 1}}{4};\,\,\frac{{ - 3}}{2};\,\,\frac{4}{5};\,\,0\] theo thứ tự tăng dần?
Số đối của các số hữu tỉ sau: 0,5; −2; 9; \[\frac{{ - 7}}{9}\] lần lượt là:
Giá trị x thỏa mãn: x + \[\frac{3}{{16}} = - \frac{5}{{24}}\] là:
Kết quả của biểu thức sau – (–171 – 172 + 223) – (171 + 172) + 223 là:
Giá trị của x thỏa mãn \[\frac{{\rm{x}}}{{{\rm{15}}}} + \frac{7}{{20}} = \frac{{73}}{{60}}\] là:
Cho biểu thức \[{\rm{A}} = \frac{{ - 2}}{9} + \frac{{ - 3}}{4} + \frac{3}{5} + \frac{1}{{15}} + \frac{1}{{57}} + \frac{1}{3} + \frac{{ - 1}}{{36}}\]. Giá trị của biểu thức A là:
Kết quả phép tính: \[{\left( {\frac{{ - 2}}{5} + \frac{1}{2}} \right)^2}\]=?
Kết quả rút gọn phân số \[\frac{{{2^{10}}{{.3}^{10}} - {2^{10}}{{.3}^9}}}{{{2^9}{{.3}^{10}}}}\] là:
Kết quả của phép tính: \[\frac{{ - 3}}{{20}} + \frac{{ - 2}}{{15}} = ?\]
Kết quả phép tính: \[\frac{3}{4} + \frac{1}{4}.\frac{{ - 12}}{{20}}\] là :