Tìm x, biết: x + (− x + 3) – (x − 7) = 9.
A. x = 1;
B. x = 2;
C. x = 3;
D. x = 7.
Đáp án đúng là: A.
Ta có: x + (− x +3) – (x −7) = 9
x − x +3 – x + 7 = 9
(3 + 7) + (x – x – x) = 9
10 + (‒ x) = 9
10 – x = 9
x = 10 – 9
x = 1.
Vậy x = 1.
Anh Minh kinh doanh hoa quả nhập khẩu. Trong lần nhập hàng vừa qua anh đã bỏ ra 90 000 000 đồng để nhập lô hàng mới. Nhưng do quá trình vận chuyển không được đảm bảo nên \(\frac{1}{3}\) số hàng nhập về không đảm bảo chất lượng. Anh Minh đã bán số hàng còn lại cao hơn 10% so với giá nhập vào và số hàng không đảm bảo chất lượng thấp hơn 15% so với giá nhập vào. Hỏi doanh thu lô hàng mới của anh Minh là bao nhiêu?
Cho số hữu tỉ \(x{\rm{ = }}\frac{{m{\rm{ }} - {\rm{ 2022 }}}}{{2021}}\), với giá trị nào của m thì x là số không dương không âm.
Để xác định điểm biểu diễn \(\frac{1}{4}\) ta chia đoạn từ điểm 0 đến điểm 1 thành 4 phần bằng nhau. Đi theo chiều dương của trục số, bắt đầu từ điểm 0, ta lấy 1 phần sẽ được điểm A.
Do đó trục số của phương án B là đúng.
Hãy sắp xếp các số hữu tỉ sau đây theo thứ tự tăng dần:\(\frac{1}{5},{\rm{ }}\frac{{ - {\rm{ 2}}}}{5},{\rm{ }}\frac{3}{7},{\rm{ }}\frac{{ - {\rm{ 1}}}}{3},{\rm{ }}0.\)
Trong bộ số liệu chuẩn, trên thực tế diện tích bề mặt hồ Tây tại Hà Nội là 5,3 km2. Minh thiết kế một bản vẽ có tỉ lệ \(\frac{1}{{150000}}\), xác định diện tích bề mặt của hồ là 0,000004 km2. Số liệu của Minh chênh lệch như thế nào với số liệu chuẩn?
Hình nào biểu diễn đúng điểm A của số hữu tỉ \[\frac{1}{4}\] trên trục số?
Trong các phép tính của số hữu tỉ, thứ tự thực hiện phép tính đối với biểu thức không có dấu ngoặc là:
Lan muốn mua một chiếc áo nhưng không biết chiều dài của áo tương ứng với các size S, M, L. Người bán hàng cho biết chiều dài áo tương ứng với các size S, M, L lần lượt là 48,5 cm; 50,2 cm; 52,4 cm. Chiếc áo Lan mua phải dài hơn \(\frac{1}{3}\) chiều cao của Lan, biết Lan cao 155 cm. Lan nên mua chiếc áo có size gì?
Biết m là một số thập phân vô hạn tuần hoàn và 2,347923 < m < 2,4452347. Tìm m?
</>
Tìm x, biết: \(2x{\rm{ }} - {\rm{ }}{\left( {\frac{2}{3}} \right)^2}{\rm{ = }}\frac{5}{9}.\)