Sau khi rút gọn tối giản phân số \(\frac{8}{{16}}\) ta được phân số:
A. \(\frac{2}{8}\);
B. \(\frac{4}{8}\);
C. \(\frac{1}{4}\);
D. \(\frac{1}{2}\).
Đáp án đúng là: D
Do 16 chia hết cho 8, nên ƯCLN(8, 16) = 8
Ta có \(\frac{8}{{16}} = \frac{{8:8}}{{16:8}} = \frac{1}{2}\)
Ta được \(\frac{1}{2}\) là phân số tối giản.
Số các phân số tối giản trong các phân số sau: \(\frac{4}{{16}};\,\,\frac{2}{5};\,\,\frac{{15}}{{24}};\,\,\frac{7}{{12}};\,\,\frac{{16}}{{18}};\,\,\frac{{49}}{{50}}\)
Đổi đơn vị 550\(c{m^2}\) = ? \({m^2}\) (viết dưới dạng phân số tối giản)
Phân số \(\frac{{42}}{{5005}}\) sau khi đưa về phân số tối giản thì có tổng tử số và mẫu số ở phân số mới là: