Cho \(x \in \mathbb{Z}\) và \[( - 154 + x) \vdots 3\] thì:
Trả lời:
Ta có:
\[\begin{array}{l}\left( { - 154 + x} \right)\, \vdots \,3\\( - 153 - 1 + x) \vdots 3\end{array}\]
Suy ra \[\left( {x - 1} \right)\, \vdots \,3\] (do \[ - 153\, \vdots \,3\] )
Do đó \[x - 1 = 3k \Rightarrow x = 3k + 1\]
Vậy x chia cho 3 dư 1.
Đáp án cần chọn là: A
Giá trị biểu thức \[M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\;\] là
Tìm \[x \in Z\;\] biết \[(x + 1) + (x + 2) + ... + (x + 99) + (x + 100) = 0\]
Gọi A là tập hợp các giá trị \[n \in Z\] để \[({n^2} - 7)\;\] là bội của \[(n + 3)\] .Tổng các phần tử của A bằng:
Tìm \(n \in {\rm Z}\) biết \[\left( {n + 5} \right) \vdots \left( {n + 1} \right)\]
Cho \[x;y \in \mathbb{Z}\] . Nếu \[5x + 46y\;\] chia hết cho 16 thì \[x + 6y\;\] chia hết cho
Cho a và b là hai số nguyên khác 0. Biết \(a \vdots b\) và \(b \vdots a\) . Khi đó