Tìm \(n \in {\rm Z}\) biết \[\left( {n + 5} \right) \vdots \left( {n + 1} \right)\]
Trả lời:
\[\left( {n + 5} \right) \vdots \left( {n + 1} \right) \Rightarrow (n + 1) + 4 \vdots (n + 1)\]
Vì \[n + 1\, \vdots \,n + 1\] và \[n \in Z\] nên để \[n + 5\, \vdots \,n + 1\]thì \[4\, \vdots \,n + 1\]
Hay \[n + 1 \in U\left( 4 \right) = \left\{ { \pm 1; \pm 2; \pm 4} \right\}\]
Ta có bảng:
Vậy \[n \in \left\{ { - 5; - 3; - 2;0;1;3} \right\}\]
Đáp án cần chọn là: B
Giá trị biểu thức \[M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\;\] là
Tìm \[x \in Z\;\] biết \[(x + 1) + (x + 2) + ... + (x + 99) + (x + 100) = 0\]
Gọi A là tập hợp các giá trị \[n \in Z\] để \[({n^2} - 7)\;\] là bội của \[(n + 3)\] .Tổng các phần tử của A bằng:
Cho \[x;y \in \mathbb{Z}\] . Nếu \[5x + 46y\;\] chia hết cho 16 thì \[x + 6y\;\] chia hết cho
Cho a và b là hai số nguyên khác 0. Biết \(a \vdots b\) và \(b \vdots a\) . Khi đó