Cho \[P = \left( {\frac{7}{{20}} + \frac{{11}}{{15}} - \frac{{15}}{{12}}} \right):\left( {\frac{{11}}{{20}} - \frac{{26}}{{45}}} \right)\] và \[Q = \frac{{5 - \frac{5}{3} + \frac{5}{9} - \frac{5}{{27}}}}{{8 - \frac{8}{3} + \frac{8}{9} - \frac{8}{{27}}}}:\frac{{15 - \frac{{15}}{{11}} + \frac{{15}}{{121}}}}{{16 - \frac{{16}}{{11}} + \frac{{16}}{{121}}}}\]. Chọn kết luận đúng:
Trả lời:
\[P = \left( {\frac{7}{{20}} + \frac{{11}}{{15}} - \frac{{15}}{{12}}} \right):\left( {\frac{{11}}{{20}} - \frac{{26}}{{45}}} \right)\]
\[P = \left( {\frac{{21}}{{60}} + \frac{{44}}{{60}} - \frac{{75}}{{60}}} \right):\left( {\frac{{99}}{{180}} - \frac{{104}}{{180}}} \right)\]
\[P = \frac{{ - 10}}{{60}}:\frac{{ - 5}}{{180}} = \frac{{ - 10}}{{60}}.\frac{{180}}{{ - 5}} = 6\]
\[Q = \frac{{5 - \frac{5}{3} + \frac{5}{9} - \frac{5}{{27}}}}{{8 - \frac{8}{3} + \frac{8}{9} - \frac{8}{{27}}}}:\frac{{15 - \frac{{15}}{{11}} + \frac{{15}}{{121}}}}{{16 - \frac{{16}}{{11}} + \frac{{16}}{{121}}}}\]
\[Q = \frac{{5\left( {1 - \frac{5}{3} + \frac{1}{9} - \frac{1}{{27}}} \right)}}{{8\left( {1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{{27}}} \right)}}:\frac{{15\left( {1 - \frac{1}{{11}} + \frac{1}{{121}}} \right)}}{{16\left( {1 - \frac{1}{{11}} + \frac{1}{{121}}} \right)}}\]
\[Q = \frac{5}{8}:\frac{{15}}{{16}} = \frac{5}{8}.\frac{{16}}{{15}} = \frac{2}{3}\]
Vì \[6 > \frac{2}{3}\] nên P > Q
Đáp án cần chọn là: A
Có bao nhiêu giá trị nguyên dương của x thỏa mãn \[{\left( {\frac{{ - 5}}{3}} \right)^3} < x < \frac{{ - 24}}{{35}}.\frac{{ - 5}}{6}\]?
Giá trị nào dưới đây của x thỏa mãn \[x:\frac{5}{8} = \frac{{ - 14}}{{35}}.\frac{{15}}{{ - 42}}\]
Có bao nhiêu giá trị của x thỏa mãn \[\left( {\frac{7}{6} + x} \right):\frac{{16}}{{25}} = \frac{{ - 5}}{4}\]:
Cho \[M = \frac{{17}}{5}.\frac{{ - 31}}{{125}}.\frac{1}{2}.\frac{{10}}{{17}}.{\left( {\frac{{ - 1}}{2}} \right)^3}\] và \[N = \left( {\frac{{17}}{{28}} + \frac{{28}}{{29}} - \frac{{19}}{{30}} - \frac{{20}}{{31}}} \right).\left( {\frac{{ - 5}}{{12}} + \frac{1}{4} + \frac{1}{6}} \right)\]. Khi đó, tổng M + N bằng
Phân số \[\frac{a}{b}\] là phân số lớn nhất mà khi chia mỗi phân số \[\frac{{12}}{{35}};\frac{{18}}{{49}}\]cho \[\frac{a}{b}\] ta được kết quả là một số nguyên. Tính a + b.
Giá trị của x thoả mãn \[\frac{{13}}{{15}} - \left( {\frac{{13}}{{21}} + x} \right).\frac{7}{{12}} = \frac{7}{{10}}\]?
Số các số nguyên x để \[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}}\]có giá trị là số nguyên là:
Tính giá trị biểu thức sau theo cách hợp lí
\[\left( {\frac{{20}}{7}.\frac{{ - 4}}{{ - 5}}} \right) + \left( {\frac{{20}}{7}.\frac{3}{{ - 5}}} \right)\]
Giá trị nào dưới đây của x thỏa mãn \[\left( { - \frac{3}{5}} \right).x = \frac{4}{{15}}\]?