Điền số thích hợp vào ô trống:
Một ô tô chạy hết \[\frac{3}{4}\] giờ trên một đoạn đường với vận tốc trung bình 40km/h.
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \[\frac{1}{2}\] giờ thì ô tô phải chạy với vận tốc trung bình là: km/h
Trả lời:
Quãng đường ô tô đi được là: \[S = {v_{tb}}.t = 40.\frac{3}{4} = 30\left( {km} \right)\]
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \[\frac{1}{2}\] giờ thì ô tô phải chạy với vận tốc trung bình là \[{v_{tb}} = s:t = 30:\frac{1}{2} = 60\left( {km/h} \right)\]
Giá trị nào dưới đây của x thỏa mãn \[x:\frac{5}{8} = \frac{{ - 14}}{{35}}.\frac{{15}}{{ - 42}}\]
Có bao nhiêu giá trị của x thỏa mãn \[\left( {\frac{7}{6} + x} \right):\frac{{16}}{{25}} = \frac{{ - 5}}{4}\]:
Có bao nhiêu giá trị nguyên dương của x thỏa mãn \[{\left( {\frac{{ - 5}}{3}} \right)^3} < x < \frac{{ - 24}}{{35}}.\frac{{ - 5}}{6}\]?
Cho \[M = \frac{{17}}{5}.\frac{{ - 31}}{{125}}.\frac{1}{2}.\frac{{10}}{{17}}.{\left( {\frac{{ - 1}}{2}} \right)^3}\] và \[N = \left( {\frac{{17}}{{28}} + \frac{{28}}{{29}} - \frac{{19}}{{30}} - \frac{{20}}{{31}}} \right).\left( {\frac{{ - 5}}{{12}} + \frac{1}{4} + \frac{1}{6}} \right)\]. Khi đó, tổng M + N bằng
Giá trị của x thoả mãn \[\frac{{13}}{{15}} - \left( {\frac{{13}}{{21}} + x} \right).\frac{7}{{12}} = \frac{7}{{10}}\]?
Số các số nguyên x để \[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}}\]có giá trị là số nguyên là:
Phân số \[\frac{a}{b}\] là phân số lớn nhất mà khi chia mỗi phân số \[\frac{{12}}{{35}};\frac{{18}}{{49}}\]cho \[\frac{a}{b}\] ta được kết quả là một số nguyên. Tính a + b.
Tính giá trị biểu thức sau theo cách hợp lí
\[\left( {\frac{{20}}{7}.\frac{{ - 4}}{{ - 5}}} \right) + \left( {\frac{{20}}{7}.\frac{3}{{ - 5}}} \right)\]
Giá trị nào dưới đây của x thỏa mãn \[\left( { - \frac{3}{5}} \right).x = \frac{4}{{15}}\]?