Có 15 công nhân với năng suất như nhau đóng xong một chiếc tàu trong 40 ngày. Hỏi cần bao nhiêu công nhân để đóng xong một con tàu trong 30 ngày?
A. 20 công nhân;
B. 10 công nhân;
C. 25 công nhân;
D. 5 công nhân.
Đáp án đúng là: A
Gọi x (công nhân) là số công nhân cần để đóng xong tàu trong 30 ngày (x Î ℕ*)
Vì số công nhân và thời gian làm việc tỉ lệ nghịch với nhau nên ta có: \[\frac{x}{{15}}\]= \[\frac{{40}}{{30}}\].
Suy ra x = \[\frac{{40}}{{30}}.15\] = 20 (thỏa mãn điều kiện)
Vậy cần 20 công nhân để đóng xong một con tàu trong 30 ngày.
Chọn đáp án A.
Cho x và y là hai đại lượng tỉ lệ thuận. Gọi x1; x2 là hai giá trị của x và y1; y2 là hai giá trị tương ứng của y. Biết rằng x1 = 8; x2 = −10 và y1 − y2 = 9. Tính y1; y2 và biểu diễn y theo x.
Ba đội máy san đất làm ba khối lượng công việc như nhau. Đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai trong 6 ngày và đội thứ ba trong 8 ngày. Hỏi mỗi đội có bao nhiêu máy, biết rằng đội thứ nhất nhiều hơn đội thứ hai là 2 máy và các máy có cùng năng suất?
Cho tỉ lệ thức 2x = 3y = 4z và x – y + z = −10. Giá trị của x, y, z lần lượt là:
Cho tỉ lệ thức \(\frac{x}{2} = \frac{y}{3};\frac{y}{4} = \frac{z}{5}\) và 2z – 3x = 18. Giá trị của z là:
Hai thanh sắt có thể tích là 26 cm3 và 13 cm3. Thanh thứ nhất nặng hơn thanh thứ hai 56 g. Hỏi thanh thứ hai nặng có khối lượng bằng bao nhiêu?
Cho tỉ lệ thức x : y : z = 1 : 3 : 4 và 2x + 3y – 2z = −6. Giá trị của x – 2y là:
Cho tỉ lệ thức \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\) và x + y – z = 4. Giá trị của x, y, z lần lượt là:
Số quyển sách của ba bạn An, Bình, Hải tỉ lệ với các số 2; 4; 5. Tính số sách của mỗi bạn biết rằng cả ba bạn có 44 quyển sách.
Cứ 100 kg thóc thì thu được 70 kg gạo. Hỏi để thu được 140 kg gạo thì cần bao nhiêu tạ thóc?
Dùng 15 máy thì tiêu thụ hết 90 lít xăng. Hỏi dùng 25 máy (cùng loại) thì tiêu thụ hết bao nhiêu lít xăng?
Cho đại lượng y tỉ lệ thuận với đại lượng x theo hệ số k (k ≠ 0). Gọi x1; x2 là các giá trị của đại lượng x và y1; y2 là các giá trị của đại lượng y tương ứng, biết \({x_1}\) = 2,5 thì y1 = −0,5. Hãy tính \({x_2}\) khi y2 = 5.