Hướng dẫn giải:
Đáp án đúng là: D
+ Hai đường thẳng cắt nhau tạo thành hai cặp góc đối đỉnh.
Ví dụ hai đường thẳng xx’ và yy’ cắt nhau tại A sẽ tạo thành hai cặp góc đối đỉnh là \(\widehat {xAy}\) và \(\widehat {x'Ay'}\); \(\widehat {xAy'}\) và \(\widehat {x'Ay}\).
Do đó khẳng định D đúng.
+ Khẳng định A, B, C sai vì:
Hai góc có tổng bằng 180° là hai góc bù nhau.
Hai góc vừa kề nhau, vừa bù nhau là hai góc kề bù.
Hai góc kề nhau là hai góc có một cạnh chung và hai cạnh còn lại nằm khác phía đối với đường thẳng chứa cạnh chung đó.
Cho các khẳng định sau:
(I). Hai góc đối đỉnh thì bằng nhau.
(II). Hai góc bằng nhau thì đối đỉnh.
(III). Hai góc kề bù là hai góc vừa kề nhau, vừa bù nhau.
Số khẳng định đúng là:
Hai đường thẳng xz và yt cắt nhau tại A như hình vẽ bên, hãy xác định các cặp góc đối đỉnh có trong hình vẽ.
Quan sát hình vẽ sau và cho biết:
Hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\)có bù với nhau không? Vì sao?
Quan sát hình vẽ sau và cho biết:
Hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\)có kề với nhau không? Vì sao?
Quan sát hình vẽ sau và cho biết:
Hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\)có kề bù với nhau không? Vì sao?
Điền vào chỗ trống trong phát biểu sau:
“Hai góc có mỗi cạnh của góc này là tia đối của một cạnh của góc kia được gọi là hai góc…”