Cho hình vẽ:
Biết Ax // Bz // Cy. Tính số đo \(\widehat {ABC}\)
Hướng dẫn giải:
Đáp án đúng là: A
Vì Ax // Bz nên \(\widehat {xAB} = \widehat {ABz} = {45^o}\) (hai góc so le trong)
Vì Bz // Cy nên \(\widehat {zBC} = \widehat {BCy} = {40^o}\) (hai góc so le trong)
Ta có: \(\widehat {ABC}\) = \(\widehat {ABz}\) + \(\widehat {BCz}\) = 45° + 40° = 85°
Vậy ta chọn phương án A.
Cho hình vẽ, biết a // b và \({\widehat A_1} = {135^o}\). Số đo \({\widehat B_2}\) là:
Cho hình vẽ:
Biết a // b và \({\widehat M_1} - {\widehat N_1} = {100^o}\). Tính số đo các góc \({\widehat M_1},{\widehat N_1}\)
Cho hình vẽ, biết x // y và \({\widehat M_2} = {70^o}\)
Số đo các góc \({\widehat N_1};{\widehat N_4}\) lần lượt là:
Cho hình vẽ sau:
Biết Ma // Pb; MN ⊥ NP; \(\widehat {NMa}\) = 30°. Tính \(\widehat {NPb}\)
Cho hình vẽ:
Biết mn // Fq và \(\widehat {pEm} = {79^o}\). Số đo \(\widehat {EFq}\) là:
Cho hình vẽ sau:
Biết \({\widehat C_1} = 45^\circ \). Số đo \({\widehat D_2}\) là: