Một vật dao động điều hoà với phương trình x = 8cos(2t - \[\frac{\pi }{6}\]) cm. Vật đi qua vị trí có vận tốc v = - 8 cm/s lần thứ thứ 2015 vào thời điểm
A. \[\frac{{6037}}{6}\] s.
B. \[\frac{{6043}}{6}\]s.
C. 1009 s.
D. 1006,5 s.
+ \({v_{\max }} = 16\pi \left( {{\rm{cm/s}}} \right)\)
+ Trong một chu kì, có 2 lần vật đi qua vị trí có vận tốc v = - 8 cm/s
+ Ta có: \({t_{2015}} = 1007T + {t_1}\) với t1là thời gian vật đi qua vị trí có vận tốc v = - 8 cm/s lần đầu tiên.
+ Tại thời điểm t = 0: \(x = 4\sqrt 3 ,v = \frac{{{v_{\max }}}}{2} = 8\pi >0\)
Sử dụng giản đồ vecto ta có:
+ Thời gian vật đi đến vị trí có vận tốc v = - 8 cm/s lần đầu tiên là:
\({t_1} = 2.\frac{T}{{12}} = \frac{T}{6}\)
Vậy \({t_{2015}} = 1007T + {t_1} = 1007T + \frac{T}{6} = \frac{{6043}}{6}\left( s \right)\)
Chọn đáp án B
Một mạch điện xoay chiều AB gồm điện trở thuần \(R\), cuộn cảm thuần có độ tự cảm L thay đổi được, tụ điện có điện dung \(C = \frac{{{{10}^{ - 4}}}}{\pi }F\) mắc nối tiếp theo đúng thứ tự. Đặt vào hai đầu mạch điện một điện áp xoay chiều \(u = {U_0}c{\rm{os(100}}\pi {\rm{t}})V,\,t(s)\), \({U_0},\,\omega \), R có giá trị không đổi. Khi \(L = {L_1} = \frac{3}{\pi }H\) hoặc \(L = {L_2} = \frac{3}{{2\pi }}H\)thì điện áp hiệu dụng giữa hai đầu cuộn cảm thuần có cùng một giá trị. Tỉ số hệ số công suất của mạch khi \(L = {L_1}\) và khi \(L = {L_2}\) là
Đặt điện áp xoay chiều có giá trị hiệu dụng U không đổi và tần số f = 50 Hz vào hai đầu đoạn mạch AB gồm hai đoạn mạch AM và MB mắc nối tiếp. Đoạn mạch AM chi có cuộn cảm thuần \[L = \frac{{0,6}}{\pi }\] H, đoạn mạch MB gồm tụ điện C và điện trở \[R = 10\sqrt 3 \] Ω nối tiếp. Biết điện áp hai đầu đoạn mạch AB lệch pha \[\frac{{2\pi }}{3}\] so với điện áp hai đầu đoạn mạch MB. Điện dung của tụ điện bằng