Một số bằng tổng các ước của nó (không kể chính nó) gọi là số hoàn hảo. Chẳng hạn, các ước của 6 (không kể chính nó) là 1; 2; 3 ta có 1 + 2 + 3 = 6. Vậy 6 là số hoàn hảo. Hãy chỉ ra trong các số 10; 28; 49 số nào là số hoàn hảo.
A. 10;
B. 28;
C. 49;
D. 10; 28 và 49.
Đáp án B
+) Lấy 10 chia cho các số tự nhiên từ 1 đến 10 ta thấy 10 chia hết cho 1; 2; 5; 10.
Các ước của 10 không kể chính nó là: 1; 2 và 5.
Ta có: 1 + 2 + 5 = 8 (khác 10).
Vậy 10 không phải là số hoàn hảo.
+) Lấy 28 chia cho các số tự nhiên từ 1 đến 28 ta thấy 28 chia hết cho 1; 2; 4; 7; 14; 28.
Các ước của 28 không kể chính nó là: 1; 2; 4; 7; 14.
Ta có: 1 + 2 + 4 + 7 + 14 = 28.
Vậy 28 là số hoàn hảo.
+) Lấy 49 chia cho các số tự nhiên từ 1 đến 49 ta thấy 49 chia hết cho 1; 7; 49.
Các ước của 49 không kể chính nó là: 1; 7.
Ta có 1 + 7 = 8 (khác 49)
Vậy 49 không phải số hoàn hảo.
Cho tập Ư(8) = {1; 2; 4; 8} và Ư(20) = {1; 2; 4; 5; 10; 20}. Tập hợp ƯC(8; 20) là:
Sắp xếp các bước tìm ƯCLN của hai hay nhiều số lớn hơn 1 là:
1 – Chọn ra các thừa số nguyên tố chung.
2 – Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất. Tích đó là ƯCLN phải tìm.
3 – Phân tích mỗi số ra thừa số nguyên tố.
Cho các phân số sau: . Có bao nhiêu phân số tối giản trong các phân số trên.
Nếu 9 là số lớn nhất sao cho và thì 9 là ………… của a và b. Chọn câu trả lời đúng nhất.
Tuần này lớp 6A và 6B gồm 40 học sinh nữ và 36 học sinh nam được phân công đi thu gom rác làm sạch bờ biển ở địa phương. Nếu chia nhóm sao cho số học sinh nam và nữ trong các nhóm bằng nhau thì:
a) Có thể chia được thành bao nhiêu nhóm học sinh?
b) Có thể chia nhiều nhất bao nhiêu nhóm học sinh?