Khẳng định nào sau đây sai?
A. \(\sqrt 4 \in \mathbb{N}\);
B. \(\sqrt 3 \in \mathbb{Q}\);
C. \(\frac{2}{3} \in \mathbb{R}\);
D. \( - 9 \in \mathbb{Z}\).
Đáp án đúng là: B
Ta có:
\(\sqrt 4 = 2\). Vì 2 là số tự nhiên nên \(\sqrt 4 \in \mathbb{N}\). Do đó, đáp án A đúng.
\(\sqrt 3 = 1,732...\) . Vì 1,732… là số thập phân vô hạn không tuần hoàn nên \(\sqrt 3 \)là số vô tỉ. Suy ra \(\sqrt 3 \in I\). Do đó, đáp án B sai.
\(\frac{2}{3} = 0,66...\). Vì 0,66… là số thập phân vô hạn tuần hoàn nên \(\frac{2}{3}\) là số hữu tỉ. Mà số vô tỉ là số thực. Suy ra, \(\frac{2}{3} \in \mathbb{R}\). Do đó, đáp án C đúng.
−9 là số nguyên âm nên \( - 9 \in \mathbb{Z}\). Do đó, đáp án D đúng.
Vậy chọn đáp án B.
Trong các số |− 9,35|; \(\sqrt {50} \); 6,(23); \(\sqrt 3 \) số lớn nhất là:
Sắp xếp các số thực \( - \frac{2}{3};\,\,\sqrt 2 ;\,\,0,2(14)\,;\frac{4}{7};\,\,0,123\) theo thứ tự từ lớn đến bé: