Cho \[\Delta DEF\] có \(\widehat E = \widehat F\). Tia phân giác của góc D cắt EF tại I. Ta có
Đáp án đúng là: C
+ Xét \[\Delta DEI\] có:
\[\widehat {{D_1}} + \widehat {{E_1}} + \widehat {{I_1}} = {180^{\rm{o}}}\] (ĐL tổng ba góc của tam giác)
+ Xét \[\Delta DFI\] có:
\[\widehat {{D_2}} + \widehat {{F_2}} + \widehat {{I_2}} = {180^{\rm{o}}}\] (ĐL tổng ba góc của tam giác)
Mà: \(\widehat {{E_1}} = \widehat {{F_2}}\) (gt) và \(\widehat {{D_1}} = \widehat {{D_2}}\) (Vì DI là tia phân giác của góc \[D\])
Nên: \(\widehat {{I_1}} = \widehat {{I_2}}\) (Hay \[\widehat {DIE} = \widehat {DIF}\]) (A và D sai)
+ Xét \[\Delta DEI\] và \[\Delta DFI\], có:
\(\widehat {{D_1}} = \widehat {{D_2}}\) (cmt)
DI là cạnh chung
\(\widehat {{I_1}} = \widehat {{I_2}}\) (cmt)
\[ \Rightarrow \Delta DIE = \Delta DIF\] (g.c.g) (B sai)
Suy ra IE = IF; DE = DF (2 cạnh tương ứng)
Vậy C đúng.
Cho tam giác ABC có AB = AC . Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chọn câu sai.
Cho tam giác ABC và tam giác DEF có AB = DE, AC = DF, \(\widehat A = \widehat D\). Biết \(\widehat B = 60^\circ \). Số đo góc E là
Cho tam giác ABC và tam giác MNP có \(\widehat A = \widehat P\); AB = PN, AC = PM. Phát biểu nào sau đây đúng?
Cho tam giác ABC và tam giác \[NPM\] có BC = PM; \(\widehat B = \widehat P\). Cần điều kiện gì để tam giác ABC bằng tam giác NPM theo trường hợp góc – cạnh – góc?
Cho tam giác ABC và tam giác MNP có \(\widehat A = \widehat P\); AC = MP, \[\widehat C = \widehat M\]. Phát biểu nào sau đây đúng?
Cho tứ giác ABCD, \[AB{\rm{//}}DC\], \[AD{\rm{//}}BC\], O là giao của AC và BD. Câu nào sau đây đúng?
Cho hình vẽ dưới đây, biết CE = DE và \(\widehat {CEA} = \widehat {DEA}\).
Khẳng định sai là
Cho tam giác ABC và tam giác \[NPM\] có BC = PM; \(\widehat B = \widehat P\). Cần điều kiện gì để tam giác ABC bằng tam giác NPM theo trường hợp cạnh – góc – cạnh?
Cho tam giác ABC và tam giác DEF có AB = DE, \(\widehat B = \widehat E,{\rm{ }}\widehat A = \widehat D\). Biết AC = 6 cm. Độ dài DF là
Cho góc xOy khác góc bẹt. Trên tia phân giác của góc xOy lấy điểm I tùy ý, qua I vẽ đường thẳng vuông góc với OI cắt Ox ở E và cắt Oy ở F. Trong các khẳng định sau, khẳng định nào đúng?
Cho hình vẽ sau, trong đó \(AB{\rm{//}}CD\), AB = CD. Khẳng định đúng là
Cho hình vẽ dưới đây, biết đoạn thẳng JK song song và bằng đoạn thẳng ML.
Khẳng định đúng là