Chọn đáp án đúng:
A. AE // BD;
B. BD // CF;
C. Cả A và B đều sai;
D. Cả A và B đều đúng.
Hướng dẫn giải
Đáp án đúng là: D
Vì
\[\widehat A + \widehat {ABD} = 50^\circ + 130 = 180^\circ \] mà hai góc ở vị trí trong cùng phía nên AE // BD
Vì \[\widehat {CBD} + \widehat C = 140^\circ + 40 = 180^\circ \] mà hai góc ở vị trí trong cùng phía nên BD // CF
Vậy cả A, B đều đúng.
Viết giả thiết cho định lí sau:
“Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng khác thì hai đường thẳng đó song song với nhau”.
Cho \(\widehat {xOy} = 120^\circ \), tia Ot là tia phân giác của góc xOy. Tính số đo góc xOt
Cho hình vẽ. Tính góc FEC, biết EF // BC và \[\widehat {ECB} = 40^\circ \]:
Cho hình chữ nhật ABCD như hình vẽ. Biết IJ // AB và \[\widehat {JOC} = 30^\circ \].
Số đo góc BAC là:
Cho hình bình hành ABCD như hình vẽ. Biết EF // DC, \[\widehat {DAB} = 65^\circ \] và \[\widehat {AFE} = 35^\circ \]. Số đo góc KAD là:
Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 110^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
Cho định lí: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông”. Giả thiết, kết luận của định lí là:
Cho hình vẽ. Biết \[\widehat {xOz} = 30^\circ \], Oz là tia phân giác của góc xOy.
Số đo của góc xOy là:
Nếu đường thẳng z cắt hai đường thẳng x, y và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì: