Có bao nhiêu số nguyên n thỏa mãn \[(n - 1)\;\] là bội của \[(n + 5)\;\] và \[(n + 5)\;\] là bội của \[(n - 1)?\;\]
Trả lời:
Vì \[\left( {n - 1} \right)\] là bội của \[\left( {n + 5} \right)\] và \[\left( {n + 5} \right)\] là bội của \[n - 1\] ,
Nên \[n - 1\] khác 0 và \[n + 5\] khác 0
Nên \[n + 5,n - 1\] là hai số đối nhau
Do đó:
\[\begin{array}{l}(n + 5) + (n - 1) = 0\\2n + 5 - 1 = 0\\2n + 4 = 0\\2n = - 4\\n = - 2\end{array}\]
Vậy có 1 số nguyên n thỏa mãn bài toán.
Đáp án cần chọn là: C
Giá trị biểu thức \[M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\;\] là
Tìm \[x \in Z\;\] biết \[(x + 1) + (x + 2) + ... + (x + 99) + (x + 100) = 0\]
Gọi A là tập hợp các giá trị \[n \in Z\] để \[({n^2} - 7)\;\] là bội của \[(n + 3)\] .Tổng các phần tử của A bằng:
Tìm \(n \in {\rm Z}\) biết \[\left( {n + 5} \right) \vdots \left( {n + 1} \right)\]
Cho \[x;y \in \mathbb{Z}\] . Nếu \[5x + 46y\;\] chia hết cho 16 thì \[x + 6y\;\] chia hết cho
Cho a và b là hai số nguyên khác 0. Biết \(a \vdots b\) và \(b \vdots a\) . Khi đó