Cho tam giác ABC có hai đường phân giác AD và BE cắt nhau tại G. Khi đó:
C. GE = GD;
Hướng dẫn giải
Đáp án đúng là: B
Ta có ∆ABC có hai đường phân giác AD và BE cắt nhau tại G.
Do đó điểm G là điểm cách đều ba cạnh của ∆ABC.
Trong một tam giác cân, đường phân giác xuất phát từ đỉnh cũng là:
Điền vào chỗ trống: “Giao điểm của ba đường phân giác trong một tam giác …”
Điền vào chỗ trống sau: “Ba đường phân giác đi qua một điểm. Điểm này cách đều … của tam giác”.
Cho hình vẽ như bên dưới. Biết GI = 8 cm. Độ dài đoạn thẳng GH bằng:
Cho tam giác ABC có hai đường phân giác AD và BE cắt nhau tại G. Khi đó CG là
Cho hình vẽ như bên dưới. Biết GK = 3x − 8 và GH = x + 4. Khi đó giá trị của x bằng:
Cho ∆ABC cân tại A có BD và CE là hai đường phân giác cắt nhau tại F. Tia AF cắt BC tại G. Khi đó điểm G:
Cho ∆ABC có trọng tâm G và I là giao của ba đường phân giác của tam giác ∆ABC. Biết B; G; I thẳng hàng. Khi đó ΔABC là tam giác gì?