Cho tam giác ABC có AB = AC = BC, phân giác BD và CE cắt nhau tại O. Chọn phát biểu sai:
A. CE ^ AB;
B. BD ^ CE;
C. BD ^ AC;
D. \(\widehat {CBD} = \widehat {BCE}.\)
Đáp án đúng là: B
Tam giác ABC có AB = AC = BC (giả thiết) nên là tam giác đều
Do đó \(\widehat A = \widehat {ABC} = \widehat {ACB}\)
CE là tia phân giác của \(\widehat {ACB}\) (giả thiết)
Nên \(\widehat {ACE} = \widehat {ECB} = \frac{1}{2}\widehat {ACB}\) (tính chất tia phân giác) (1)
Xét tam giác ACE và tam giác BCE có:
AC = BC (giả thiết),
\(\widehat {ACE} = \widehat {ECB}\) (chứng minh trên),
CE là cạnh chung
Do đó DACE = DBCE (c.g.c)
Suy ra \(\widehat {AEC} = \widehat {BEC}\) (hai góc tương ứng)
Mà \(\widehat {AEC} + \widehat {BEC} = 180^\circ \) (tính chất hai góc kề bù)
Nên \(\widehat {AEC} = \widehat {BEC} = \frac{{180^\circ }}{2} = 90^\circ \)
Do đó CE ^ AB. Nên A là khẳng định đúng.
Mà BD là tia phân giác của \(\widehat {ABC}\) (giả thiết)
Nên \(\widehat {ABD} = \widehat {DBC} = \frac{1}{2}\widehat {ABC}\) (tính chất tia phân giác) (2)
Xét tam giác ABD và tam giác CBD có:
AB = BC (giả thiết),
\(\widehat {ABD} = \widehat {DBC}\) (chứng minh trên),
BD là cạnh chung
Do đó DABD = DCBD (c.g.c)
Suy ra \(\widehat {ADB} = \widehat {CDB}\) (hai góc tương ứng)
Mà \(\widehat {ADB} + \widehat {CDB} = 180^\circ \) (tính chất hai góc kề bù)
Nên \(\widehat {ADB} = \widehat {CDB} = \frac{{180^\circ }}{2} = 90^\circ \)
Do đó BD ^ AC. Nên B là khẳng định sai và C là khẳng định đúng.
Từ (1) và (2) suy ra \(\widehat {ABD} = \widehat {DBC} = \widehat {ACE} = \widehat {ECB}\). Nên D là khẳng định đúng.
Vậy ta chọn phương án B.
Cho góc xOy khác góc bẹt, gọi Ot là tia phân giác của góc xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia đối của tia Ot lấy điểm C tuỳ ý. Chọn phát biểu đúng:
Cho hình vẽ dưới đây:
Biết AB = AC, BD = EC, . Xét các khẳng định sau:
(1) DABD = DACE;
(2) DABE = DACD.
Chọn câu đúng:
Cho tam giác BAC và tam giác MNP có BA = MN, CA = MP. Phát biểu nào sau đây là đúng:
Cho DABC và DMNP có AB = NP, \(\widehat B = \widehat N = 55^\circ ,\) BC = NM. Biết \(\widehat A = 50^\circ ,\) số đo góc P là:
Cho tam giác ABC và tam giác DEG có: AB = DE, \(\widehat {ABC} = \widehat {DEG}.\) Điều kiện để DABC = DDEG theo trường hợp cạnh – góc – cạnh là:
Cho hình vẽ sau:
Điều kiện để DABC = DAGE theo trường hợp cạnh – góc – cạnh là:
Cho hình vẽ dưới đây:
Số cặp tam giác bằng nhau theo trường hợp cạnh – góc – cạnh là:
Cho góc nhọn xOy và một điểm A nằm trong góc đó. Kẻ AH ^ Ox tại H và AK ^ Oy tại K. Kéo dài AH một đoạn HB = AH và kéo dài AK một đoạn KC = AK. Nối OA, OB, OC. Chọn phát biểu đúng:
Cho hình vuông ABCD, trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm N và trên cạnh DC lấy điểm P sao cho AM = BN = CP. Số đo góc MNP là: