Cho ∆ABC có M là trung điểm BC. Kẻ BE và CF lần lượt cùng vuông góc với AM ở E và F. Khi đó ta có BF song song với đường thẳng nào trong các đường thẳng sau đây.
A. CE;
B. MC;
C. AC;
D. AE.
Đáp án đúng là: A
Xét ∆BME và ∆CMF, có:
BM = CM (M là trung điểm BC).
\[\widehat {BEM} = \widehat {CFM} = 90^\circ \].
\[\widehat {BME} = \widehat {CMF}\] (hai góc đối đỉnh).
Do đó ∆BME = ∆CMF (cạnh huyền – góc nhọn).
Ta suy ra ME = MF (cặp cạnh tương ứng).
Xét ∆BMF và ∆CME, có:
MF = ME (chứng minh trên).
BM = CM (M là trung điểm BC).
\[\widehat {BMF} = \widehat {CME}\] (hai góc đối đỉnh).
Do đó ∆BMF = ∆CME (cạnh – góc – cạnh).
Ta suy ra \[\widehat {MBF} = \widehat {MCE}\].
Mà hai góc này ở vị trí so le trong.
Do đó ta có BF // CE.
Vậy ta chọn đáp án A.
Cho ∆ABC có AI, BH, CK là các đường cao (I ∈ BC, K ∈ AB, H ∈ AC). Biết ∆ABH = ∆ACK. Kết luận nào sau đây đúng?
Cho ∆ABC vuông tại A có AB < AC, \[\widehat B = 60^\circ \]. Kẻ AH ⊥ BC (H ∈ BC). Gọi D là điểm trên cạnh AC sao cho AD = AB. Kẻ DE ⊥ BC (E ∈ BC) và DK ⊥ AH (K ∈ AH). Cho các khẳng định sau:
(I) BH = AK;
(II) HA = KD = HE.
Chọn phương án đúng:
Cho ∆ABC vuông tại A. Trên cạnh BC, lấy điểm D sao cho BD = BA = 5 cm. Đường thẳng vuông góc với BC tại D cắt AC tại H. Gọi E là giao điểm của DH và AB. Biết CD = 3 cm. Độ dài cạnh BE bằng
Cho ∆ABC nhọn và ∆ABC = ∆DEF. Kẻ AH ⊥ BC (H ∈ BC) và DK ⊥ EF (K ∈ EF). Kết luận nào sau đây là đúng?
Cho ∆ABC vuông tại A và ∆MNP vuông tại M có AB = MN, CB = PN. Biết AC = 5 cm. Tính độ dài MP.
Cho ∆ABC vuông tại A, tia phân giác \[\widehat B\] cắt AC tại D. Kẻ DE ⊥ BC tại E. Gọi H là giao điểm của BD và AE. Đường thẳng BH vuông góc với đường thẳng nào trong các đường thẳng sau đây.