Ot là tia phân giác của \(\widehat {xOy}\) khi:
Hướng dẫn giải:
Đáp án đúng là: C
Vì \(\widehat {xOt} = \widehat {yOt} = \frac{1}{2}\widehat {xOy}\) nên \(\widehat {xOt} + \widehat {tOy} = \frac{1}{2}\widehat {xOy} + \frac{1}{2}\widehat {xOy} = \widehat {xOy}\).
Hay \(\widehat {xOt} + \widehat {tOy} = \widehat {xOy}\) .
Suy ra tia Ot nằm giữa hai tia Ox và Oy.
Mà \(\widehat {xOt} = \widehat {tOy}\).
Do đó tia Ot là tia phân giác của \(\widehat {xOy}\).
Cho hai đường thẳng xt và yz cắt nhau tại A sao cho \(\widehat {xAy} = 5{5^o}\). Hãy tính số đo các góc sau:
\(\widehat {xAz}\);
Cho hai đường thẳng xt và yz cắt nhau tại A sao cho \(\widehat {xAy} = 5{5^o}\). Hãy tính số đo các góc sau:
\(\widehat {zAt}\);
Cho hai đường thẳng xt và yz cắt nhau tại A sao cho \(\widehat {xAy} = 5{5^o}\). Hãy tính số đo các góc sau:
\(\widehat {yAt}\).
Hướng dẫn giải:
Cho \(\widehat {xOy} = {30^o}\); Oy là tia phân giác \(\widehat {xOz}\). Khi đó \(\widehat {xOz}\) bằng:
Cho hai đường thẳng xx’ và yy’ cắt nhau như hình vẽ. Biết \(\widehat {xOy'} - \widehat {xOy} = {90^o}\). Tính \(\widehat {xOy}\).
Cho \(\widehat {xOy}\)và \(\widehat {yOz}\) là hai góc kề bù. Biết \(\widehat {xOy}\) = 60° và tia Ot là tia phân giác của \(\widehat {yOz}\). Số đo góc \(\widehat {xOt}\) là:
Cho hai đường thẳng xx’ và yy’ cắt nhau như hình vẽ. Biết \(\widehat {xOy'} = 2\widehat {xOy}\). Tính \(\widehat {xOy}\).
Cho hai đường thẳng xx’ và yy’ cắt nhau tại O sao cho \(\widehat {xOy} = {60^o}\). Gọi Ot là tia phân giác của \(\widehat {x'Oy}'\). Số đo \(\widehat {xOt}\) là: