Cho ∆ABC vuông tại A, biết AB = 10 cm. Trên đường thẳng AC, lấy hai điểm E và F sao cho AE = 3 cm, AF = 5 cm. So sánh CA, CB, CE và CF.
A. CF < CE < CA < CB;
Đáp án đúng là: A
Ta thấy CA ⊥ AB tại A.
Do đó CA là đường vuông góc kẻ từ điểm C đến đường thẳng AB và BC là đường xiên kẻ từ điểm C đến đường thẳng AB.
Suy ra CA < CB (1).
Ta có E ∈ AC và AE = 3 cm.
Suy ra CE = AC – AE = AC – 3.
Do đó CE < AC (2).
Ta có F ∈ AC và AF = 5 cm.
Suy ra CF = AC – AF = AC – 5 = (AC – 3) – 2.
Mà CE = AC – AE = AC – 3 (chứng minh trên).
Do đó CF = CE – 2
Suy ra CF < CE (3).
Từ (1), (2), (3), ta suy ra CF < CE < CA < CB.
Vậy ta chọn đáp án A.
Cho ∆ABC có AD là đường cao như hình bên.
Trong ba cạnh AB, AD, AC, cạnh nào ngắn nhất?
Cho ∆ABC vuông tại A. Kẻ AH ⊥ BC (H ∈ BC). Có bao nhiêu đường vuông góc kẻ từ các điểm A, B, C đến các đường thẳng có trong hình bên?
Trong hình bên có bao nhiêu đường xiên kẻ từ các điểm M, P, Q đến đường thẳng NT?
Cho ∆ABC, điểm D nằm giữa B và C. Gọi H, K lần lượt là chân các đường vuông góc kẻ từ điểm D xuống các đường thẳng AB, AC.
So sánh BC và tổng DH + DK.Cho ∆ABC vuông tại A. Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F. So sánh độ dài các cạnh EA và BF.
Hình bên mô tả một chiếc thang đứng hình chữ A là tam giác ABC. Do chiếc thang hơi ngắn nên một người thợ đã nối thêm 2 thanh gỗ bằng nhau BM và CN lần lượt vào hai cạnh AB, AC. Để giữ thăng bằng và cố định chiếc thang nên người thợ này muốn đóng thêm 2 thanh gỗ bằng nhau là BN và CM. Biết BC = 0,6 m, MN = 0,9 m. Em hãy cho biết độ dài thanh gỗ BN cần dài ít nhất bao nhiêu là hợp lí?
Cho ∆MNP vuông tại M. Vẽ MH ⊥ NP tại H. Trên cạnh NP lấy điểm E sao cho NE = MN. Trên cạnh MP lấy điểm F sao cho MF = MH. Khoảng cách từ E đến đường thẳng MP là đoạn thẳng:
Cho ∆ABC vuông tại A. Gọi M là trung điểm AC. Kẻ AH ⊥ BM tại H, CK ⊥ BM tại K. So sánh AB và .
Cho ∆ABC. Vẽ AD ⊥ BC, BE ⊥ AC, CF ⊥ AB (D ∈ BC, E ∈ AC, F ∈ AB). So sánh AD + BE + CF và chu vi C của ∆ABC.