Cho ∆ABC vuông tại A. Gọi M là trung điểm AC. Kẻ AH ⊥ BM tại H, CK ⊥ BM tại K. So sánh AB và .
A. ;
Đáp án đúng là: B
Ta có AH ⊥ BM (giả thiết) và CK ⊥ BM (giả thiết).
Suy ra AH // CK.
Do đó (cặp góc so le trong).
Xét ∆HAM và ∆KCM, có:
(hai góc đối đỉnh).
MA = MC (M là trung điểm AC).
(chứng minh trên).
Do đó ∆HAM = ∆KCM (g.c.g).
Suy ra MH = MK (cặp cạnh tương ứng).
Ta có đoạn thẳng BA là đường vuông góc kẻ từ điểm B đến đường thẳng AC; đoạn thẳng BM là đường xiên kẻ từ điểm B đến đường thẳng AC.
Suy ra BA < BM.
Do đó BA < BH + HM (1) và BA < BK – MK (2).
Lấy (1) + (2) vế theo vế ta được 2BA < BH + HM + BK – MK.
Mà HM = MK (chứng minh trên).
Do đó 2AB < BH + BK.
Suy ra .
Vậy ta chọn đáp án B.
Cho ∆ABC có AD là đường cao như hình bên.
Trong ba cạnh AB, AD, AC, cạnh nào ngắn nhất?
Cho ∆ABC vuông tại A. Kẻ AH ⊥ BC (H ∈ BC). Có bao nhiêu đường vuông góc kẻ từ các điểm A, B, C đến các đường thẳng có trong hình bên?
Trong hình bên có bao nhiêu đường xiên kẻ từ các điểm M, P, Q đến đường thẳng NT?
Cho ∆ABC vuông tại A, biết AB = 10 cm. Trên đường thẳng AC, lấy hai điểm E và F sao cho AE = 3 cm, AF = 5 cm. So sánh CA, CB, CE và CF.
Cho ∆ABC, điểm D nằm giữa B và C. Gọi H, K lần lượt là chân các đường vuông góc kẻ từ điểm D xuống các đường thẳng AB, AC.
So sánh BC và tổng DH + DK.Cho ∆MNP vuông tại M. Vẽ MH ⊥ NP tại H. Trên cạnh NP lấy điểm E sao cho NE = MN. Trên cạnh MP lấy điểm F sao cho MF = MH. Khoảng cách từ E đến đường thẳng MP là đoạn thẳng:
Cho ∆ABC vuông tại A. Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F. So sánh độ dài các cạnh EA và BF.
Hình bên mô tả một chiếc thang đứng hình chữ A là tam giác ABC. Do chiếc thang hơi ngắn nên một người thợ đã nối thêm 2 thanh gỗ bằng nhau BM và CN lần lượt vào hai cạnh AB, AC. Để giữ thăng bằng và cố định chiếc thang nên người thợ này muốn đóng thêm 2 thanh gỗ bằng nhau là BN và CM. Biết BC = 0,6 m, MN = 0,9 m. Em hãy cho biết độ dài thanh gỗ BN cần dài ít nhất bao nhiêu là hợp lí?
Cho ∆ABC. Vẽ AD ⊥ BC, BE ⊥ AC, CF ⊥ AB (D ∈ BC, E ∈ AC, F ∈ AB). So sánh AD + BE + CF và chu vi C của ∆ABC.