Hướng dẫn giải
Đáp án đúng là: D
Theo bài tia Oy là phân giác của \(\widehat {xOz}\)
Nên \(\widehat {{\rm{yOz}}} = \widehat {{\rm{xOy}}} = 90^\circ \)(tính chất tia phân giác của một góc)
Ta có \(\widehat {{\rm{xOy}}} + \widehat {{\rm{yOz}}} = \widehat {{\rm{xOz}}}\) (hai góc kề nhau)
Hay \(90^\circ + 90^\circ = \widehat {{\rm{xOz}}}\)
Suy ra \(\widehat {{\rm{xOz}}} = 180^\circ \)
Do đó \(\widehat {{\rm{xOz}}}\) là góc bẹt
Vậy ta chọn phương án D.
Cho định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”. Giả thiết của định lí là
Quan sát hình vẽ.
Có tất cả bao nhiêu góc kề (không kể góc bẹt) với \(\widehat {{\rm{xOy}}}\)?
Tia Oz là tia phân giác của \(\widehat {{\rm{xOy}}}\), biết rằng \(\widehat {{\rm{xOz}}} = 40^\circ \). Số đo của \(\widehat {{\rm{yOz}}}\) là:
Cho \(\widehat {{\rm{DOF}}} = 140^\circ \), biết rằng OE là tia phân giác của \(\widehat {{\rm{DOF}}}\). Số đo của \(\widehat {EOF}\) là
Cho a // b, đường thẳng c cắt hai đường thẳng a, b lần lượt tại E và F sao cho \(\widehat {{\rm{MEF}}} = 80^\circ \).
Số đo \(\widehat {EFN}\)là