Cho (H) là hình phẳng giới hạn bởi parabol và nửa đường elip có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A.
B.
C.
D.
Tất cả các giá trị thực của tham số m sao cho hàm số đồng biến trên khoảng là:
Một hộp chứa 30 thẻ được đánh số từ 1 đến 30. Người ta lấy ngẫu nhiên một thẻ từ hộp đó. Tính xác suất để thẻ lấy được mang số lẻ và không chia hết cho 3
Có bao nhiêu giá trị nguyên của tham số m để phương trình có hai nghiệm phân biệt?
Cho hình chóp tứ giác S.ABCD có đáy là nửa lục giác đều nội tiếp đường tròn đường kính AD=2a, . Tính khoảng cách giữa BD và SC
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, AB = 3, BC = 4. Hai mặt phẳng (SAB), (SAC) cùng vuông góc với mặt phẳng đáy, đường thẳng SC hợp với mặt phẳng đáy một góc . Thể tích mặt cầu ngoại tiếp hình chóp S.ABC là
Cho một đa giác đều gồm 2n đỉnh (n≥2, nÎN*). Chọn ngẫu nhiên ba đỉnh trong sổ 2n đỉnh của đa giác, xác suất ba đỉnh được chọn tạo thành một tam giác vuông là . Tìm n.
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây, hàm số nào có bảng biến thiên sau?
Trong mặt phẳng tọa độ Oxy, tìm một vectơ chỉ phương của đường thẳng
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng đáy là điểm H thuộc cạnh BC sao cho . Biết thể tích khối chóp S.ABC bằng thì góc giữa SB và mặt phăng (ABC) bằng α. Giá trị tanα bằng bao nhiêu?
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h). (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Giá trị x theo h để thể tích khối nón đỉnh O đáy là (C) lớn nhất là:
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Gọi K là trung điểm DD’. Khoảng cách giữa hai đường thẳng CK và A'D là
Một hộp chứa 20 thẻ được đánh số từ 1 đến 20. Lấy ngẫu nhiên 1 thẻ từ hộp đó. Tính xác suất thẻ lấy được ghi số lẻ và chia hết cho 3.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3), N(2;3;1) và P(3;-1;2). Tọa độ điểm Q sao cho MNPQ là hình bình hành là: