Tìm tập xác định D của hàm số
A. D = (0;+∞)
B. D = R
C.
D. D = R \{-2;1}
Chọn đáp án D.
Cho hàm số y=f(x) liên tục, luôn dương trên [0;3] và thỏa mãn Khi đó giá trị của tích phân là
Cho tứ diện đều ABCD. Gọi α là góc giữa đường thẳng AB và mặt phẳng (BCD). Tính cosα
Cho X = {0;1;2;3;…;15} Chọn ngẫu nhiên 3 số trong tập X. Tính xác suất để trong ba số được chọn không có hai số liên tiếp.
Gọi S là tập hợp các giá trị của tham số m để phương trình có nghiệm. Tập R\S có bao nhiêu giá trị nguyên?
Có bao nhiêu giá trị nguyên của tham số m để phương trình cos3x – cos2x+mcosx = 1 có đúng bảy nghiệm khác nhau thuộc khoảng (-π/2;2π)?
Cho năm số a,b,c,d,e tạo thành một cấp số nhân theo thứ tự và các số đều khác 0, biết rằng ta có và tổng của chúng bằng 40. Tính giá trị |S| với S=abcde
Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?
Cho tam giác ABC vuông tại A, BC=a; AC=b; AB=c (b<c) Khi quay tam giác vuông ABC một vòng quanh cạnh BC, quang cạnh AC, quanh cạnh AB ta được các hình có diện tích toàn phần lần lượt là . Khẳng định nào sau đây là đúng?
Lúc 10 giờ sáng trên sa mạc, một nhà địa chất đang ở tại vị trí A, anh ta muốn đến vị trí B (bằng ô tô) trước 12 giờ trưa, với AB = 70 km. Nhưng trong sa mạc thì xe chỉ có thể di chuyển với vận tốc 30km/h. Cách vị trí A một đoạn 10km có một con đường nhựa chạy song song với đường thẳng nối từ A đến B. Trên đường nhựa thì xe có thể di chuyển với vận tốc 50km/h. Tìm thời gian ít nhất để nhà địa chất đến B?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): . Các điểm A, B, C lần lượt là giao điểm (khác gốc tọa độ) của mặt cầu (S) và các trục tọa độ Ox, Oy, Oz. Phương trình mặt phẳng (ABC) là
Cho các số thực dương a;b;c với c ≠ 1 Khẳng định nào sau đây sai?