Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a; AD = 2a. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác S.ABC.
A.
B.
C.
D.
Gọi E là trung điểm của AD ta chỉ ra mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình
chóp S.EABC .
Từ đó ta đưa về bài toán tìm bán kính của mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy.
Sử dụng công thức tính nhanh
với R là bán kính mặt cầu ngoại tiếp hình chóp, r là bán kính
đường tròn ngoại tiếp đáy hình chóp, h là chiều cao hình chóp
Sử dụng công thức tính diện tích mặt cầu
Mà SE vuông góc với AD (do tam giác SAD đều có SE là trung tuyến)
Suy ra SE vuông góc với ( ABCD)=>SE vuông góc với (EABC)
Nhận thấy EABC là hình vuông nên đường tròn ngoại tiếp EABC cũng
là đường tròn ngoại tiếp tam giác ABC
Hay mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình chóp S.EABC.
Mà hình chóp S.EABC có cạnh bên SE vuông góc với (EABC) và đáy EABC là hình vuông cạnh a. Gọi I là tâm hình vuông EABC
Suy ra bán kính mặt cầu ngoại tiếp chóp S.EABC là
Gọi S là tập hợp tất cả các giá trị của tham số và phương trình có nghiệm duy nhất. Tìm số phân tử của S .
Một hộp đựng 9 thẻ được đánh số 1;2;3;4;5;6;7;8;9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.
Một ô tô đang chạy với vận tốc 10m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chạm dần đều với vận tốc , trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Cho hàm số y = f (x) có đồ thị như hình bên. Gọi S là tập tất cả các giá trị nguyên dương của tham số m để hàm số có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
Cho hai số thực a, b thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, và SA vuông góc với đáy ABCD. Tính sin với là góc tạo bởi đường thẳng BD và mặt phẳng (SBC) .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cos với là góc tạo bởi (SAC) và (SCD).
Cho là hai hàm số liên tục trên . Chọn mệnh đề sai trong các mệnh đề sau
Cho điểm M (1; 2; 5), mặt phẳng (P) đi qua điểm M cắt trục tọa độ Ox; Oy; Oz tại A, B, C sao cho M là trực tâm của tam giác ABC. Phương trình mặt phẳng (P) là
Cho hình nón có bán kính đáy băng a và độ dài đường sinh băng 2a. Diện tích xung quanh hình nón đó bằng
Một hình trụ có bán kính đáy bằng chiều cao và bằng a. Một hình vuông ABCD có AB;CD là 2 dây cung của 2 đường tròn đáy và mặt phẳng (ABCD) không vuông góc với đáy. Diện tích hình vuông đó bằng .
Cho đa giác đều có 2018 đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho?