Một cái cốc hình trụ có bán kính đáy là 2cm , chiều cao 20cm . Trong cốc đang có một ít nước, khoảng cách giữa đáy cốc và mặt nước là 12cm (Hình vẽ). Một con quạ muốn uống được nước trong cốc thì mặt nước phải cách miệng cốc không quá 6cm . Con quạ thông minh mổ những viên bi đá hình cầu có bán kính 0,6cm thả vào cốc nước để mực nước dâng lên. Để uống được nước thì con quạ cần thả vào cốc ít nhất bao nhiêu viên bi?
A. 29
B. 30
C. 28
D. 27
Cách giải:
Để uống được nước thì con quạ phải thả các viên bi vào cốc sao cho mực nước trong cốc dâng lên ít nhất: 20 -12 - 6 = 2( cm)
Khi đó, thể tích của mực nước dâng lên là
Cho hình chóp S.ABC có SA =2a, SB = 3a, SC = 4a và . Tính thể tích V của khối chóp S.ABC
Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB=2a, AD=BC=CD=a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng , tính theo a thể tích V của khối chóp
Cho f(1)=1, f(m+n)=f(m)+f(n)+mn với mọi mnÎN*. Tính giá trị của biểu thức
Cho tứ diện ABCD có AB,AC,AD đôi một góc vuông, AB =4cm, AC =5cm, AD= 3cm. Thể tích khối tứ diện ABCD bằng
Cho hàm số với m là tham số thực. Giả sử m0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m0 thuộc khoảng nào trong các khoảng cho dưới đây?
Cho khối chóp có thể tích bằng và diện tích đáy bằng . Chiều cao của khối chóp đó là
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ dưới. Xét hàm số . Tìm m để
Cho hình chóp S.ABCD có đáy ABC là tam giác với AB=2 cm, AC=3cm, . Gọi lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm A, B, C,
Cho khối trụ có thể tích bằng , chiều cao 5cm. Tính bán kính R của khối trụ đã cho
Cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng
Giả sử là giá trị thực của tham số m để đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng với O là gốc tọa độ. Tính a+2b