Cho hàm số có đạo hàm . Hàm số có mấy điểm cực trị?
A. 3
B. 2
C. 0
D. 1
Chọn B.
Phương pháp
Hàm đa thức đạt cực trị tại các điểm là nghiệm bội lẻ của đạo hàm.
Cách giải:
Do có các nghiệm x=0 (bội 2) nên loại.
Ngoài ra có hai nghiệm bội lẻ, đó là
Vậy hàm số có có 2 điểm cực trị.
Cho hàm số có bảng xét dấu của đạo hàm như sau:
Hàm số nghịch biến trên khoảng nào dưới đây?
Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh . Tính thể tích V của khối chóp đã cho.
Tìm tất cá các giá trị thực của tham số m để hàm số đồng biến trên
Tìm tất cả các giá trị của tham số m để phương trình có ba nghiệm phân biệt.
Có bao nhiêu số nguyên dương m sao cho đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt A, B và ?
Cho hàm số . Tìm tất cá các giá trị thực của tham số m để hàm số có 5 cực trị.
Tìm tất cả các giá trị khác nhau của tham số m để hàm số đồng biến trên
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số . Tính M – m.