Cho hình chóp S.ABC có đáy là tam giác vuông cận tại B, . Cạnh bên SA vuông góc với mặt phẳng (ABC) và SC hợp với đáy một góc bằng . Gọi (S) là mặt cầu ngoại tiếp khối chóp S.ABC. Tính thể tích khối cầu .
A.
B.
C.
D.
Đáp án C
Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi O là trung điểm của AC, suy ra OM//SA
=> OM là trục của đường tròn ngoại tiếp tam giác ABC,
=> OA = OB = OC
Mặt khác, tam giác SAC vuông tại A, do đó OA = OS = OC
Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ABC có thể tích
A là hình chiếu của S lên mặt phẳng (ABC), do đó góc
Cho hình chữ nhật ABCD và nửa đường tròn đường kính AB như hình vẽ. Gọi M, N lần lượt là trung điểm của AB, CD. Biết . Tính thể tích V của vật thể tròn xoay khi quay mô hình trên quanh trục MN.
Diện tích hình phẳng được giới hạn bởi đường cong và đường thẳng , trục hoành trong miền bằng
Cho hình lăng trụ đứng tam giác , tam giác ABC có , góc , . Tính thể tích khối lăng trụ là
Trong không gian cho đường thẳng d có phương trình . Một véctơ chỉ phương của d là
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3) và đường thẳng . Xác định tọa độ điểm M' là điểm đối xứng với M qua đường thẳng d.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu và mặt phẳng . Khẳng định nào sau đây là đúng?
Tìm m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng 4.