Biết rằng hàm số f(x) = ax2+bx+c thỏa mãn , và (với a, b, ). Giá trị của biểu thức P=a+b+c là
A.
B.
C.
D.
Cho tam giác ABC vuông cân tại A, cạnh AB=4a. Quay tam giác này xung quanh cạnh AB. Thể tích của khối nón được tạo thành là
Gọi S là diện tích hình phẳng giới hạn bởi các đường 2my=x2, 2mx=y2, (m>0). Giá trị của m để S=3 là
Cho tứ diện ABCD. Gọi K, L lần lượt là trung điểm của AB và BC, N là điểm thuộc đoạn CD sao cho CN=2ND. Gọi P là giao điểm của AD với mặt phẳng (KLN). Tính tỉ số .
Phương trình 9x-3.3x+2 = 0 có hai nghiệm x1, x2 (x1<x2). Giá trị biểu thức A=2x1+3x2 là
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên đáy ABCD trùng với trung điểm AB. Biết AB=a, BC=2a, . Góc giữa hai mặt phẳng (SBD) và đáy là 60°. Khoảng cách từ A đến mặt phẳng (SBD) gần với giá trị nào nhất trong các giá trị sau đây?
Cho hàm số y = f(x) có đồ thị như hình vẽ. Số điểm cực trị của hàm số y=f(x2-2x) là
Hệ số lớn nhất của biểu thức P(x)=(1+x)(1+2x)17 sau khi khai triển và rút gọn là
Một cơ sở sản xuất có 2 bồn chứa nước hình trụ có chiều cao bằng nhau và bằng h(m), bán kính đáy lần lượt là 2 (m) và 2,5 (m). Chủ cơ sở dự tính làm bồn chứa nước mới, hình trụ, có chiều cao h1=1,5h(m) và có thể tích bằng tổng thể tích của hai bồn nước đã có sẵn. Bán kính đáy của bồn nước mà cơ sở dự tính làm gần nhất với giá trị nào dưới đây?
Giả sử hàm f có đạo hàm cấp hai trên R thỏa mãn f’(x)=1 và f(1-x)+x2f”(x)=2x với mọi . Giá trị tích phân bằng