Áp dụng định lý Py-ta-go vào ∆ABC vuông tại A, ta có:
AB2 + AC2 = BC2
\[ \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{18}^2} + {{24}^2}} = 30\] (cm)
Do đó chu vi tam giác ABC là:
AB + AC + BC = 18 + 24 + 30 = 72 (cm).
Vậy chọn C.
Cho tam giác ABC vuông tại A, \[\widehat B = {60^o}\], AB = 5cm. Tia phân giác góc B cắt AC tại D. Từ D kẻ đường thẳng vuông góc với BC tại E.
a) Chứng minh: ∆ADB = ∆BDE.
b) Chứng minh tam giác AEB là tam giác đều.
c) Tính BC.
II. Tự luận:
Điểm thi học kỳ I môn Sinh học của các bạn học của lớp 7A được thống kê trong bảng “tần số” sau:
Điểm (x) |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Tần số (n) |
3 |
4 |
4 |
8 |
5 |
7 |
1 |
N = 32 |
a) Tìm mốt của dấu hiệu trong bảng “tần số “trên? Giải thích tại sao?
b) Tính điểm trung bình của lớp 7A.
c) Nêu nhận xét.
Cho đơn thức .
a) Thu gọn đơn thức A.
b) Xác định hệ số và bậc của đơn thức A.
c) Tính giá trị của A khi x = 1; y = −1; z = 2.