Cho tam giác ABC vuông tại A, \[\widehat B = {60^o}\], AB = 5cm. Tia phân giác góc B cắt AC tại D. Từ D kẻ đường thẳng vuông góc với BC tại E.
a) Chứng minh: ∆ADB = ∆BDE.
b) Chứng minh tam giác AEB là tam giác đều.
c) Tính BC.
GT |
∆ABC vuông tại A, \[\widehat B = {60^o}\], AB = 5cm. BD là tia phân giác \(\widehat {ABC}\) (\(D \in AC\)). \(DE \bot BC\,\,(E \in BC)\). |
KL |
a) ∆ADB = ∆BDE. b) ∆AEB là tam giác đều. c) Tính BC. |
a) Xét ∆ABD vuông tại A và ∆BDE vuông tại E có:
BD cạnh chung.
\[\widehat {ABD} = \widehat {DBE} = {30^o}\](BD là phân giác góc B)
Do đó ∆ADB = ∆BDE (cạnh huyền – góc nhọn).
b) Từ câu a: ∆ADB = ∆BDE suy ra AB = BE.
Xét ∆ABE có AB = BE, \(\widehat B = {60^o}\).
Vậy ∆ABE là tam giác đều.
c) Ta có ∆ABE là tam giác đều (câu b)
Suy ra AB = BE = AE = 5 cm (*)
Do đó \[\widehat {BAE} = \widehat {ABE} = {60^o}\]
Mặt khác \[\widehat {BAC} = {90^o}\]
\[ \Rightarrow \widehat {EAC} = \widehat {BAC} - \widehat {BAE} = {90^o} - {60^o} = {30^o}\] (1)
Áp dụng định lý tổng ba góc của một tam giác vào ∆ABC, ta có:
\[\widehat {ABC} + \widehat {BCA} + \widehat {BAC} = {180^o}\]
\[ \Rightarrow \widehat {BCA} = {180^o} - \widehat {ABC} - \widehat {BAC}\]
\[ \Rightarrow \widehat {BCA} = {180^o} - {60^o} - {90^o} = {30^o}\] (2)
Từ (1) và (2) suy ra \[\widehat {EAC} = \widehat {BCA}\] nên ∆AEC cân tại E.
Suy ra AC = EC = 5 cm (**)
Từ (*) và (**) suy ra BC = BE + EC = 5 + 5 = 10 (cm).
Vậy BC = 10 cm.
II. Tự luận:
Điểm thi học kỳ I môn Sinh học của các bạn học của lớp 7A được thống kê trong bảng “tần số” sau:
Điểm (x) |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Tần số (n) |
3 |
4 |
4 |
8 |
5 |
7 |
1 |
N = 32 |
a) Tìm mốt của dấu hiệu trong bảng “tần số “trên? Giải thích tại sao?
b) Tính điểm trung bình của lớp 7A.
c) Nêu nhận xét.
Cho đơn thức .
a) Thu gọn đơn thức A.
b) Xác định hệ số và bậc của đơn thức A.
c) Tính giá trị của A khi x = 1; y = −1; z = 2.