Một tam giác có chu vi bằng 36cm, ba cạnh của tam giác đó lần lượt tỉ lệ thuận với 3; 4; 5. Tính độ dài ba cạnh của tam giác đó.
Gọi độ dài ba cạnh của tam giác là a, b, c (cm) (a, b, c > 0).
Chu vi của tam giác bằng 36 cm nên ta có: a + b + c = 36.
Giả sử ba cạnh tỉ lệ thuận với 3; 4; 5 lần lượt là a, b, c.
Khi đó: .
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a = 3 . 3 = 9;
b = 3 . 4 = 12;
c = 3 . 5 = 15.
Vậy độ dài ba cạnh của tam giác là: 9 cm; 12 cm; 15 cm.
Nếu góc xOy có số đo bằng 47o thì số đo của góc đối đỉnh với góc xOy bằng bao nhiêu?
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, B sao cho OA = 3 cm, OB = 5cm. Trên tia Oy lấy điểm C, D sao cho OC = OA, OD = OB. Nối AD và BC cắt nhau tại I.
a) Chứng minh: ∆OAD = ∆OCB.
b) Chứng minh: IA = IC.
c) Chứng minh: OI là tia phân giác của .
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, B sao cho OA = 3 cm, OB = 5cm. Trên tia Oy lấy điểm C, D sao cho OC = OA, OD = OB. Nối AD và BC cắt nhau tại I.
a) Chứng minh: ∆OAD = ∆OCB.
b) Chứng minh: IA = IC.
c) Chứng minh: OI là tia phân giác của .
Với các kí hiệu trên hình vẽ, cần có thêm yếu tố nào nữa để kết luận ∆ABC = ∆ADE (g.c.g) ?
Cho biết x và y là hai đại lượng tỉ lệ thuận, khi x = 5 thì y = 15. Hệ số tỉ lệ k của y đối với x là:
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, B sao cho OA = 3 cm, OB = 5cm. Trên tia Oy lấy điểm C, D sao cho OC = OA, OD = OB. Nối AD và BC cắt nhau tại I.
a) Chứng minh: ∆OAD = ∆OCB.
b) Chứng minh: IA = IC.
c) Chứng minh: OI là tia phân giác của .