IMG-LOGO

Câu hỏi:

11/07/2024 78

Cho biểu thức:

P=(x2+1x29xx+3+53x):(2x+10x+31) với x ≠ 3, x ≠ −3, x ≠ −7.

a) Rút gọn P.

b) Tính P khi |x – 1| = 2.

c) Tìm x để P=x+56.

Trả lời:

verified Giải bởi qa.haylamdo.com

a) Rút gọn P. Với x ≠ 3, x ≠ −3, x ≠ −7.

P=(x2+1x29xx+3+53x):(2x+10x+31)

=[x2+1(x+3)(x3)xx+35x3]:(2x+10x+3x+3x+3)

=[x2+1(x+3)(x3)x(x3)(x+3)(x3)5(x+3)(x+3)(x3)]:(2x+10x+3x+3x+3)

=x2+1x(x3)5(x+3)(x+3)(x3):2x+10(x+3)x+3

=x2+1x2+3x5x15(x+3)(x3):x+7x+3

=2x14(x+3)(x3).x+3x+7=2x3

b) Ta có |x – 1| = 2.

 x – 1 = 2 hoặc x – 1 = – 2

 x = 3 (loại) hoặc x = – 1 (TM).

Thay x = – 1 vào P=2x3, ta được:

P=213=24=12.

c) Ta có P=x+562x3=x+56

 (x – 3)(x + 5) = −12

 x2 + 2x – 15 = −12

 x2 + 2x – 3 = 0

 x2 – x + 3x – 3 = 0

 x(x – 1) + 3(x – 1) = 0

 (x – 1)(x + 3) = 0

 x – 1 = 0 hoặc x + 3 = 0

 x = 1 (TM) hoặc x = – 3 (loại).

Vậy để P=x+56 thì x = – 1.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD, đường chéo lớn BD. Qua A kẻ đường thẳng cắt các đoạn thẳng BD, BC lần lượt tại E và F, cắt DC tại K.

a) Chứng minh AE2 = EF.EK.

b) Kẻ AHBD,  BNCD,  BMAD(HBD,  NCD,  MAD).

Chứng minh: ∆AHB đồng dạng với ∆BND và AD.DM + DC.DN = BD2.

Xem đáp án » 29/06/2022 88

Câu 2:

Lúc 6 giờ sáng một ô tô khởi thành từ A để đi đến B. Đến 7 giờ 30 phút một ô tô thứ hai cũng khởi hành từ A để đi đến B với vận tốc lớn hơn vận tốc ô tô thứ nhất là 20km/h và hai xe gặp nhau lúc 10 giờ 30 phút. Tính vận tốc mỗi ô tô? (ô tô không bị hư hỏng hay dừng lại dọc đường).

Xem đáp án » 29/06/2022 78

Câu 3:

Giải các phương trình sau:

a) 9x2 – 3 = (3x + 1)(2x – 3)

b) 3xx5+1x=4x+3x(x5)+3

Xem đáp án » 29/06/2022 75

Câu 4:

Cho a, b, c đôi một khác nhau và 1a+1b+1c=0. Tính giá trị biểu thức: P=1a2+2bc+1b2+2ac+1c2+2ab.

Xem đáp án » 29/06/2022 75