Cho hàm số y = f(x) liên tục và có đạo hàm trên thỏa mãn Biết rằng tích phân (với a, b là các số nguyên dương và là phân số tối giản). Tính
A. T = 0
B. T = -48
C. T = 16
D. T = 1
Xét tích phân
Đặt khi đó ta có
Theo bài ra ta có:
Thay
Thay
Xét tích phân
Từ lấy tích phân từ 0 đến 1 hai vế ta có:
Suy ra
Vậy
Chọn D.
Cho hình trụ có chiều cao bằng 4 và nội tiếp trong mặt cầu có bán kính bằng 3. Gọi lần lượt là thể tích của khối trụ và khối cầu đã cho. Tính tỉ số
Cho số phức z thỏa mãn Tập hợp các điểm biểu diễn số phức là một đường tròn tâm I(a; b) và bán kính Tính a + b + R.
Cho hàm số y = f(x) có đạo hàm trên [0; 2]; f(0) = 1 và Tính f(2).
Biết tiếp tuyến của đồ thị hàm số tại điểm A(-1; 1) vuông góc với đường thẳng Tính
Một hình nón và một hình trụ có cùng chiều cao bằng h và bán kính đường tròn đáy bằng r hơn nữa diện tích xung quanh của chúng cũng bằng nhau. Khi đó, tỉ số bằng:
Trong không gian Oxyz, cho điểm M(3; -2; -1). Ba điểm A, B, C lần lượt là hình chiếu vuông góc của M lên ba trục tọa độ Ox, Oy, Oz. Mặt phẳng đi qua ba điểm A, B, C có một vectơ pháp tuyến là:
Cho a, b là các số thực dương. Rút gọn biểu thức được kết quả là: