Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

23/07/2024 211

Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD  và BC  và G  là trọng tâm tam giác SAB. Tìm điều kiện của AB  và CD  để thiết diện của (IJG) và hình chóp là một hình bình hành.

A.\[AB = \frac{2}{3}CD\]

B. \[AB = CD\]

C. \[AB = \frac{3}{2}CD\]

D. \[AB = 3CD\]

Đáp án chính xác

Trả lời:

verified Giải bởi qa.haylamdo.com

Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD  và BC  và G  là trọng tâm tam giác SAB. Tìm điều kiện của AB  và CD  để t (ảnh 1)

Ta có: ABCD  là hình thang và I,J là trung điểm của AD và BC  nên IJ là đường trung bình của hình thang ABCD.

\[ \Rightarrow IJ//AB//CD\]

\(\left\{ {\begin{array}{*{20}{c}}{G \in (SAB) \cap (IJG)}\\{AB \subset (SAB)}\\{IJ \subset (IJG)}\\{AB//IJ}\end{array}} \right. \Rightarrow \) Trong (SAB) qua G  kẻ\[MN//AB\left( {M \in SA;N \in SB} \right)\]

\[ \Rightarrow \left( {SAB} \right) \cap \left( {{\rm{IJ}}G} \right) = MN\] và\[MN//IJ//AB//CD\]

Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

G  là trọng tâm của tam giác SAB  và MN//AB nên theo định lí Ta-let ta có:

\[\frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3}\] (Với E  là trung điểm của AB).

\[ \Rightarrow MN = \frac{2}{3}AB\]

Lại có: IJ là đường trung bình của hình thang ABCD  nên\[{\rm{IJ}} = \frac{{AB + CD}}{2}.\]

Để hình thang MNJI  trở thành hình bình hành thì cần điều kiện MN=IJ.

\[ \Rightarrow \frac{2}{3}AB = \frac{1}{2}\left( {AB + CD} \right) \Leftrightarrow \frac{1}{6}AB = \frac{1}{2}CD \Leftrightarrow AB = 3CD.\]

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD  có đáy ABCD  là hình thang đáy lớn AB . Gọi M  là một điểm trên cạnh CD;(α) là mặt phẳng qua M  và song song với SA  và BC. Thiết diện của mp(α) với hình chóp là:

Xem đáp án » 05/07/2022 261

Câu 2:

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 05/07/2022 255

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, \(SA = a\sqrt 3 ,SB = 2a\). Điểm M nằm trên đoạn AD sao cho AM=2MD. Gọi (P) là mặt phẳng qua M và song song với (SAB). Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P).

Xem đáp án » 05/07/2022 234

Câu 4:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA=SD=3a, SB=SC=\(3a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP=2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 05/07/2022 223

Câu 5:

Cho tứ diện ABCD có AB=a, CD=b. Gọi I, J lần lượt là trung điểm AB và CD, giả sử AB⊥CD. Mặt phẳng (α) qua M nằm trên đoạn IJ và song song với AB và CD Tính diện tích thiết diện của tứ diện ABCD với mặt phẳng (α) biết \[IM = \frac{1}{3}IJ\].

Xem đáp án » 05/07/2022 223

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và (α) là mặt phẳng chứa AM và song song với BD. Gọi E và F lần lượt là giao điểm của (α) với các cạnh SB,SD, gọi I là giao điểm của ME và BC,J là giao điểm của MF và CD. Nhận xét gì về ba điểm I,J,A?

Xem đáp án » 05/07/2022 220

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BCvà G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng?

Xem đáp án » 05/07/2022 219

Câu 8:

Cho tứ diện đều ABCD cạnh a . Gọi M  và P  lần lượt là hai điểm di động trên các cạnh AD và BC sao cho \[MA = PC = x(0 < x < \frac{a}{2})\] . Mặt phẳng (α) đi qua MP  song song với CD cắt tứ diện theo một thiết diện là hình gì?

Xem đáp án » 05/07/2022 218

Câu 9:

Cho hình chóp S.ABCD có đáy là hình vuông. Gọi O là giao điểm của AC và BD, M là trung điểm của DO, (α) là mặt phẳng đi qua M và song song với AC và SD. Thiết diện của hình chóp cắt bởi mặt phẳng (α) là hình gì.

Cho hình chóp S.ABCD có đáy là hình vuông. Gọi O là giao điểm của AC và BD, M là trung điểm của DO,  (ảnh 1)

Xem đáp án » 05/07/2022 213

Câu 10:

Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên cạnh BC lấy điểm N bất kỳ. Gọi (α) là mặt phẳng chứa đường thẳng MN và song song với CD. Xác định vị trí của điểm N trên cạnh BC sao cho thiết diện là hình bình hành.

Xem đáp án » 05/07/2022 211

Câu 11:

Cho hình hộp ABCD.A′B′C′D′, gọi M là trung điểm CD, (P) là mặt phẳng đi qua M và song song với B′D và CD′. Thiết diện của hình hộp cắt bởi mặt phẳng (P) là hình gì?

Xem đáp án » 05/07/2022 211

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, tam giác SBD  cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng (α) đi qua M và song song với SA,BD  cắt SO,SB,AB tại N,P,Q. Tứ giác MNPQ  là hình gì?

Xem đáp án » 05/07/2022 208

Câu 13:

Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn BC , đáy nhỏ AD.  Mặt bên (SAD) là tam giác đều, (α) là mặt phẳng đi qua M  trên cạnh AB , song song với SA,BC. Mp(α)cắt các cạnh CD,SC,SB lần lượt tại N,P,Q.MNPQ  là hình gì?

Xem đáp án » 05/07/2022 205

Câu 14:

Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB  và CD. Gọi I,J  lần lượt là trung điểm của các cạnh AD  và BC  và G là trọng tâm tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG)

Xem đáp án » 05/07/2022 201

Câu 15:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm SD, N là trọng tâm tam giác SAB. Đường thẳng MN cắt mặt phẳng (SBC) tại điểm I. Tính tỷ số \(\frac{{IN}}{{IM}}\).

Xem đáp án » 05/07/2022 196

Câu hỏi mới nhất

Xem thêm »
Xem thêm »