Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

21/07/2024 248

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm SD, hãy tính theo aa khoảng cách dd từ M đến mặt phẳng (SAC).

Trả lời:

verified Giải bởi qa.haylamdo.com

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SC và mặt phẳng (ABCD) bằng 45 độ. Gọi M là trung điểm  (ảnh 1)

Bước 1: Đổi \[d\left( {M;\left( {SAC} \right)} \right)\] sang \[d\left( {H;\left( {SAC} \right)} \right)\]

Gọi H là trung điểm AB. Vì \[\Delta SAB\] cân tại S nên\[SH \bot AB\]

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{(SAB) \cap (ABCD) = AB}\\{SH \subset (ABCD),SH \bot AB}\end{array}} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)

Gọi \[K = HD \cap AC\]  Áp dụng định lí Ta-let ta có\[\frac{{DK}}{{HK}} = \frac{{DC}}{{AH}} = 2 \Rightarrow DK = 2HK\]

Ta có \[MD \cap \left( {SAC} \right) = S \Rightarrow \frac{{d\left( {M;\left( {SAC} \right)} \right)}}{{d\left( {D;\left( {SAC} \right)} \right)}} = \frac{{SM}}{{SD}} = \frac{1}{2}\]

\[ \Rightarrow d\left( {M;\left( {SAC} \right)} \right) = \frac{1}{2}d\left( {D;\left( {SAC} \right)} \right)\]

Lại có\[DH \cap \left( {SAC} \right) = K\] nên\[\frac{{d\left( {D;\left( {SAC} \right)} \right)}}{{d\left( {H;\left( {SAC} \right)} \right)}} = \frac{{DK}}{{HK}} = 2 \Rightarrow d\left( {D;\left( {SAC} \right)} \right) = 2d\left( {H;\left( {SAC} \right)} \right)\]

Bước 2: Trong (ABCD) kẻ \[HE \bot AC\,\,\left( {E \in AC} \right)\] trong (SHE) kẻ\[HN \bot SE\,\,\left( {N \in SE} \right)\] chứng minh\[HN \bot \left( {SAC} \right)\]

Do đó\[d\left( {M;\left( {SAC} \right)} \right) = d\left( {H;\left( {SAC} \right)} \right)\]

Trong (ABCD) kẻ\[HE \bot AC\,\,\left( {E \in AC} \right)\],  trong (SHE) kẻ\[HN \bot SE\,\,\left( {N \in SE} \right)\] ta có:

\(\left\{ {\begin{array}{*{20}{c}}{AC \bot HE}\\{AC \bot SH}\end{array}} \right. \Rightarrow AC \bot (SHE) \Rightarrow AC \bot HN\left\{ {\begin{array}{*{20}{c}}{HN \bot SE}\\{HN \bot AC}\end{array} \Rightarrow HN \bot (SAC)} \right.\)

\[ \Rightarrow d\left( {H;\left( {SAC} \right)} \right) = HN\]

Bước 3: Xác định góc giữa SC và (ABCD), từ đó tính SH.

Vì \[SH \bot \left( {ABCD} \right)\] nên HC là hình chiếu vuông góc của SC lên (ABCD)

\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;HC} \right) = \angle SCH = {45^0}\]

\[ \Rightarrow {\rm{\Delta }}SHC\] vuông cân tại \[H \Rightarrow SH = HC = \sqrt {B{C^2} + B{H^2}} \]

\[ = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt {17} }}{2}\]

Bước 4: Tính\[d\left( {M;\left( {SAC} \right)} \right)\]

Ta có: \[{S_{HAC}} = \frac{1}{2}HE.AC = \frac{1}{2}{S_{ABC}}\]

\[ \Rightarrow HE.AC = \frac{1}{2}.AB.BC\]

\[ \Rightarrow HE = \frac{{\frac{1}{2}.AB.BC}}{{AC}} = \frac{{\frac{1}{2}.a.2a}}{{\sqrt {{a^2} + {{\left( {2a} \right)}^2}} }} = \frac{a}{{\sqrt 5 }}\]

Áp dụng hệ thức lượng trong tam giác vuông SHE ta có:

Nên\[HN = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{\frac{{a\sqrt {17} }}{2}.\frac{a}{{\sqrt 5 }}}}{{\sqrt {\frac{{17{a^2}}}{4} + \frac{{{a^2}}}{5}} }} = \frac{{a\sqrt {1513} }}{{89}}\]

Vậy \[d\left( {M;\left( {SAC} \right)} \right) = \frac{{a\sqrt {1513} }}{{89}}\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) một góc \({30^0}\).Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 05/07/2022 1,058

Câu 2:

Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật. Cạnh bên SA vuông góc với đáy, SA=AB=a và AD=x.a. Gọi E là trung điểm của SC. Tìm x, biết khoảng cách từ điểm E đến mặt phẳng (SBD) bằng \(h = \frac{a}{3}\).

Xem đáp án » 05/07/2022 267

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

Xem đáp án » 05/07/2022 252

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc \({60^ \circ }\)Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).

Xem đáp án » 05/07/2022 230

Câu 5:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng \({60^ \circ }\). Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).

Xem đáp án » 05/07/2022 228

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) góc 300. Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 05/07/2022 222

Câu 7:

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \(\frac{{a\sqrt {21} }}{6}\). Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC) .

Xem đáp án » 05/07/2022 210

Câu 8:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

Xem đáp án » 05/07/2022 193

Câu 9:

Cho hình lập phương ABCD,A′B′C′D′ có cạnh bằng 3a. Khoảng cách từ A′ đến mặt phẳng (ABCD) bằng

Xem đáp án » 05/07/2022 191

Câu 10:

Cho tứ diện OABC có ba cạnh OA,OB,OC đôi một vuông góc với nhau. Biết khoảng cách từ điểm O đến các đường thẳng BC,CA,AB lần lượt là \(a,a\sqrt 2 ,a\sqrt 3 \). Khoảng cách từ điểm O đến mặt phẳng (ABC) là \(\frac{{2a\sqrt m }}{{11}}\). Tìm m.

Xem đáp án » 05/07/2022 176

Câu 11:

Cho hình lăng trụ tam giác đều ABC.A′B′C′ có độ dài cạnh đáy AB=8,, cạnh bên bằng \(\sqrt 6 \) (minh họa như hình vẽ). Gọi M là trung điểm của cạnh A′C′. Khoảng cách từ B′ đến mặt phẳng (ABM) bằng bao nhiêu?

Cho hình lăng trụ tam giác đều ABC.A′B′C′ có độ dài cạnh đáy AB=8,, cạnh bên bằng (ảnh 1)

Xem đáp án » 05/07/2022 169

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên \(SA = \frac{{a\sqrt {15} }}{2}\) và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC).

Xem đáp án » 05/07/2022 166

Câu 13:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \[AD = 2BC,\;AB = BC = a\sqrt 3 \]. Đường thẳng SA vuông góc với mặt phẳng (ABCD). Gọi E là trung điểm của cạnh SC. Tính khoảng cách d từ điểm E đến mặt phẳng (SAD).

Xem đáp án » 05/07/2022 140

Câu 14:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a\sqrt 2 \). Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách dd từ D đến mặt phẳng (SBC).

Xem đáp án » 05/07/2022 137

Câu 15:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh aa. Cạnh bên \(SA = a\sqrt 3 \) và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).

Xem đáp án » 05/07/2022 131

Câu hỏi mới nhất

Xem thêm »
Xem thêm »