Cho hàm số f(x) có đạo hàm \[f\prime \left( x \right) = {x^2}\left( {x + 2} \right)\left( {x - 3} \right).\] Điểm cực đại của hàm số \[g\left( x \right) = f({x^2} - 2x)\;\] là:
A.x=3
B.x=0
C.x=1
D.x=−1
Ta có:
\[\begin{array}{l}g(x) = f({x^2} - 2x)\\ \Rightarrow g\prime (x) = (2x - 2)f\prime ({x^2} - 2x)\\g\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x - 2 = 0}\\{f\prime ({x^2} - 2x) = 0}\end{array}} \right.\end{array}\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 2x = - 2}\\{{x^2} - 2x = 3}\end{array}} \right.\) (ta không xét \[{x^2} - 2x = 0\] vì x=0 là nghiệm kép của phương trình \[f'\left( x \right) = 0\])
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\\{x = - 1}\end{array}} \right.\) và qua các nghiệm này thì g′(x) đổi dấu.
Chọn x=4 ta có \[g'\left( 4 \right) = 6f'\left( 8 \right) > 0\]
Khi đó ta có BXD của g′(x) như sau:
Điểm cực đại của hàm số\[g\left( x \right) = f\left( {{x^2} - 2x} \right)\] là\[{x_{CD}} = 1\]
Đáp án cần chọn là: CCâu 31. Hàm số \[f\left( x \right) = {x^4}{\left( {x - 1} \right)^2}\] có bao nhiêu điểm cực trị?
Bước 1: Tính f′(x).
Ta có:
\[\begin{array}{l}f\left( x \right) = {x^4}{\left( {x - 1} \right)^2}\\ \Rightarrow f'\left( x \right) = 4{x^3}{\left( {x - 1} \right)^2} + {x^4}.2\left( {x - 1} \right)\,\,\,\,\,\,\\f'\left( x \right) = 2{x^3}\left( {x - 1} \right)\left[ {2\left( {x - 1} \right) + x} \right]\,\,\,\,\\\,\,f'\left( x \right) = 2{x^3}\left( {x - 1} \right)\left( {3x - 2} \right)\end{array}\]
Bước 2: Giải phương trình \[f'\left( x \right) = 0\] xác định số nghiệm bội lẻ.
\[f\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0\,(nghiem\,boi3)}\\{x = 1\,(nghiem\,don)}\\{x = \frac{2}{3}\,(nghiem\,don)}\end{array}} \right.\]
Vậy hàm số f(x) đã cho có 3 điểm cực trị.
Cho hàm số \[y = f\left( x \right)\;\]có đạo hàm \[f\prime \left( x \right) = {x^2}({x^2} - 1).\] Điểm cực tiểu của hàm số \[y = f\left( x \right)\;\] là:
Đồ thị hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + n\] có điểm cực tiểu là A(1;3). Giá trị của m+n bằng:
Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số m để hàm số g(x) không có cực trị.
Cho hàm số y=f(x) có đạo hàm \[f\prime (x) = (x - 1)({x^2} - 2)({x^4} - 4)\] Số điểm cực trị của hàm số y=f(x) là:
Cho các phát biểu sau:
1. Hàm số y=f(x) đạt cực đại tại \[{x_0}\] khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua \[{x_0}\].
2. Hàm số y=f(x) đạt cực trị tại \[{x_0}\] khi và chỉ khi \[{x_0}\] là nghiệm của đạo hàm.
3. Nếu \[f\prime (x0) = 0\;\] và \[f\prime \prime (x0) = 0\;\] thì \[{x_0}\] không phải là cực trị của hàm số y=f(x) đã cho.
4. Nếu f′(x0)=0 và \[f\prime \prime (xo) > 0\;\] thì hàm số đạt cực đại tại \[{x_0}\].
Các phát biểu đúng là:
Cho hàm số y=f(x) liên tục trên R và có bảng xét dấu \[f\prime (x)\;\] như sau :
Hàm số y=f(x) có bao nhiêu điểm cực trị ?
Nếu \[{x_0}\] là điểm cực đại của hàm số thì \[({x_0};f({x_0}))\;\]là:
Cho hàm số y=f(x) có đạo hàm trên (a;b). Nếu \[f\prime (x)\;\] đổi dấu từ âm sang dương qua điểm \[{x_0}\] thuộc (a;b) thì
Điều kiện để hàm số bậc ba không có cực trị là phương trình y′=0 có:
Đồ thị hàm số \[y = {x^3} - 3x + 2\] có 2 điểm cực trị A,B. Diện tích tam giác OAB với O(0;0) là gốc tọa độ bằng:
Cho hàm số \[y = \frac{{ - {x^2} + 3x + 6}}{{x + 2}}\], chọn kết luận đúng:
Hình vẽ dưới đây mô tả số người nhiễm Covid-19 đang được điều trị ở Việt Nam tính từ ngày 23/01/2020 đến ngày 13/02/2021.
Hỏi từ ngày 16/06/2020 đến ngày 27/01/2021, ngày nào Việt Nam có số người được điều trị Covid-19 nhiều nhất?
Cho hàm số f(x) có đạo hàm \[f\prime (x) = x(x - 1){(x + 4)^3},\forall x \in \mathbb{R}.\] Số điểm cực tiểu của hàm số đã cho là: