Người ta cần chế tạo các món quà lưu niệm bằng đồng có dạng khối chóp tứ giác đều, được mạ vàng bốn mặt bên và có thể tích bằng 16cm3. Diện tích mạ vàng nhỏ nhất của khối chóp bằng bao nhiêu cm2? (Kết quả làm tròn đến hàng đơn vị.)
Bước 1: Giả sử chóp tứ giác đều là \[S.ABCD\]. Gọi\[O = AC \cap BD\] đặt\[AB = x\,\,\left( {x > 0} \right)\] tính SO theo x.
Giả sử chóp tứ giác đều là S.ABCD Gọi\[O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\]
Đặt\[AB = x\,\,\left( {x > 0} \right)\] ta có \[{S_{ABCD}} = {x^2}\]
\[ \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}SO.{x^2} = 16 \Leftrightarrow SO = \frac{{48}}{{{x^2}}}\]
Bước 2: Gọi M là trung điểm của CD. Tính SM theo x, từ đó tính \[{S_{{\rm{\Delta }}SCD}}\] theo x.
Gọi M là trung điểm của CD ta có\(\left\{ {\begin{array}{*{20}{c}}{CD \bot OM}\\{CD \bot SO}\end{array}} \right. \Rightarrow CD \bot (SOM) \Rightarrow CD \bot SM\)
Ta có\[OM = \frac{1}{2}AD = \frac{1}{2}AB = \frac{x}{2}\] áp dụng định lí Pytago ta có:
\[SM = \sqrt {S{O^2} + O{M^2}} = \sqrt {{{\left( {\frac{{48}}{{{x^2}}}} \right)}^2} + \frac{{{x^2}}}{4}} \]
\[ \Rightarrow {S_{{\rm{\Delta }}SCD}} = \frac{1}{2}SM.CD = \frac{1}{2}\sqrt {{{\left( {\frac{{48}}{{{x^2}}}} \right)}^2} + \frac{{{x^2}}}{4}} .x = \frac{1}{2}\sqrt {\frac{{{{48}^2}}}{{{x^2}}} + \frac{{{x^4}}}{4}} \]
Bước 3: Tìm GTNN của diện tích mạ vàng
Để diện tích mạ vàng nhỏ nhất thì\[{S_{{\rm{\Delta }}SCD}}\] nhỏ nhất\[ \Rightarrow \frac{{{{48}^2}}}{{{x^2}}} + \frac{{{x^4}}}{4}\] đạt giá trị nhỏ nhất.
Ta có
\[\frac{{{{48}^2}}}{{{x^2}}} + \frac{{{x^4}}}{4} = \frac{{1152}}{{{x^2}}} + \frac{{1152}}{{{x^2}}} + \frac{{{x^4}}}{4} \ge 3\sqrt[3]{{\frac{{1152}}{{{x^2}}} + \frac{{1152}}{{{x^2}}} + \frac{{{x^4}}}{4}}}\]
\[ \ge 3.\sqrt[3]{{331776}}\] (BĐT Cô-si).
Vậy diện tích mạ vàng nhỏ nhất là \[4.3.\sqrt[3]{{331776}} \approx 831\,c{m^3}\]
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=sinx trên đoạn \[[ - \frac{\pi }{2}; - \frac{\pi }{3}]\] lần lượt là
Cho hàm số \[y = {x^3} - 3m{x^2} + 6\], giá trị nhỏ nhất của hàm số trên \[\left[ {0;3} \right]\;\]bằng 2 khi:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi M và m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = f(1 - 2cosx)\] trên \[\left[ {0;\frac{{3\pi }}{2}} \right].\]Giá trị của M+m bằng
Cho hàm số y=f(x) có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?
Cho hàm số f(x). Biết hàm số f′(x) có đồ thị như hình dưới đây. Trên đoạn \[\left[ { - 4;3} \right],\]hàm số \[g(x) = 2f(x) + {(1 - x)^2}\;\] đạt giá trị nhỏ nhất tại điểm
Có bao nhiêu số nguyên \[m \in [ - 5;5]\;\] để \[\mathop {min}\limits_{\left[ {1;3} \right]} \mid {x^3} - 3{x^2} + m\mid \ge 2.\]
Khi xây nhà, cô Ngọc cần xây một bể đựng nước mưa có thể tích V=6m3 dạng hình hộp chữ nhật với chiều dài gấp ba lần chiều rộng, đáy và nắp và các mặt xung quanh đều được đổ bê tông cốt thép. Phần nắp bể để hở một khoảng hình vuông có diện tích bằng \(\frac{2}{9}\) diện tích nắp bể. Biết rằng chi phí cho 1m2 bê tông cốt thép là 1.000.000d. Tính chi phí thấp nhất mà cô Ngọc phải trả khi xây bể (làm tròn đến hàng trăm nghìn và các chữ số viết liền)?
Giá trị nhỏ nhất của hàm số \[y = 2x + \cos x\] trên đoạn \[\left[ {0;1} \right]\;\]là :
Cho hàm số f(x) xác định và liên tục trên R, có \[\mathop {\lim }\limits_{x \to + \infty } = + \infty ;\mathop {\lim }\limits_{x \to - \infty } = - \infty \] , khi đó:
Cho hàm số f(x) xác định trên \[\left[ {0;2} \right]\;\]và có GTNN trên đoạn đó bằng 5. Chọn kết luận đúng:
Cho biết GTLN của hàm số f(x) trên \[\left[ {1;3} \right]\;\]là M=−2. Chọn khẳng định đúng:
Cho các số thực x,y thay đổi thỏa mãn \[{x^2} + 2{y^2} + 2xy = 1\] và hàm số \[f(t) = {t^4} - {t^2} + 2\]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \[Q = f\left( {\frac{{x + y + 1}}{{x + 2y - 2}}} \right)\] Tính M+m?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ, chọn kết luận đúng:
Cho hàm số \[y = a{x^3} + b{x^2} + cx + d\] có đồ thị như hình bên:
Giá trị nguyên lớn nhất của tham số m để hàm số \[y = f(|x| - m)\;\] đồng biến trên khoảng \[\left( {10; + \infty } \right)\;\]là: