IMG-LOGO

Câu hỏi:

22/07/2024 134

Gọi F(x) là một nguyên hàm của hàm số \[y = x.cosx\] mà F(0)=1. Phát biểu nào sau đây đúng:

A.F(x) là hàm chẵn.

Đáp án chính xác

B.F(x) là hàm lẻ.

C.F(x) là hàm tuần hoàn với chu kì 2π.

D.F(x) không là hàm chẵn cũng không là hàm lẻ.

Trả lời:

verified Giải bởi qa.haylamdo.com

Ta có \[F\left( x \right) = \smallint x.\cos xdx\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cosxdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = sinx}\end{array}} \right. \Rightarrow F(x) = xsinx - \smallint sinxdx + C = xsinx + cosx + C.\)

\[F\left( 0 \right) = 1 \Leftrightarrow 0\sin 0 + \cos 0 + C = 1 \Leftrightarrow 1 + C = 1 \Leftrightarrow C = 0 \Rightarrow F\left( x \right) = x\sin x + \cos x\]

Ta có:

\[F\left( { - x} \right) = \left( { - x} \right)\sin \left( { - x} \right) + \cos \left( { - x} \right) = x\sin x + \cos x = F\left( x \right) \Rightarrow F\left( x \right)\] là hàm chẵn.

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết rằng \[x{e^x}\] là một nguyên hàm của hàm số f(−x) trên khoảng \[\left( { - \infty ; + \infty } \right)\]. Gọi F(x) là một nguyên hàm của \[f\prime \left( x \right){e^x}\;\] thỏa mãn F(0)=1, giá trị của F(−1) bằng:

Xem đáp án » 05/07/2022 188

Câu 2:

Biết \[F\left( x \right) = \left( {ax + b} \right).{e^x}\] là nguyên hàm của hàm số \[y = (2x + 3).{e^x}\]. Khi đó b−a là

Xem đáp án » 05/07/2022 160

Câu 3:

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:

Xem đáp án » 05/07/2022 148

Câu 4:

Chọn công thức đúng:

Xem đáp án » 05/07/2022 138

Câu 5:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

Xem đáp án » 05/07/2022 135

Câu 6:

Nguyên hàm của hàm số \[y = \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx\] là:

Xem đáp án » 05/07/2022 132

Câu 7:

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:

Xem đáp án » 05/07/2022 130

Câu 8:

Ta có \[ - \frac{{x + a}}{{{e^x}}}\] là một họ nguyên hàm của hàm số \[f(x) = \frac{x}{{{e^x}}}\], khi đó:

Xem đáp án » 05/07/2022 129

Câu 9:

Tính \[I = \smallint {e^{2x}}\cos 3xdx\] ta được:

Xem đáp án » 05/07/2022 127

Câu 10:

Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).

Xem đáp án » 05/07/2022 126

Câu 11:

Tính \[I = \smallint x{\tan ^2}xdx\] ta được:

Xem đáp án » 05/07/2022 126

Câu 12:

Tìm nguyên hàm F(x) của \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}.\] biết F(0)=1.

Xem đáp án » 05/07/2022 122

Câu 13:

Tính \[I = \smallint \cos \sqrt x dx\] ta được:

Xem đáp án » 05/07/2022 120

Câu 14:

Nguyên hàm của hàm số \[f(x) = \cos 2x\ln \left( {\sin x + \cos x} \right)dx\]  là:

Xem đáp án » 05/07/2022 120

Câu 15:

Tính \[I = \smallint \ln \left( {x + \sqrt {{x^2} + 1} } \right)dx\] ta được:

Xem đáp án » 05/07/2022 118

Câu hỏi mới nhất

Xem thêm »
Xem thêm »