Biết \[\mathop \smallint \limits_0^{\frac{\pi }{4}} x.c{\rm{os}}2xdx = a + b\pi \], với a,b là các số hữu tỉ. Tính S=a+2b.
A.S=0
B.S=1
C.\[S = \frac{1}{2}\]
D. \[S = \frac{3}{8}\]
Đặt :\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{1}{2}.sin2x}\end{array}} \right.\)
Suy ra: \(\int\limits_0^{\frac{\pi }{4}} {x.cosxdx = (x.\frac{1}{2}.sin2x)} \left| {_0^{\frac{\pi }{4}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {sin2xdx} \)
\( = \frac{\pi }{8} + \frac{1}{4}cos2x\left| {_0^{\frac{\pi }{4}}} \right. = - \frac{1}{4} + \frac{\pi }{8}\)
\[ \Rightarrow a = - \frac{1}{4};b = \frac{1}{8} \Rightarrow S = a + 2b = 0\]
Đáp án cần chọn là: A
Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì
Cho tích phân \[I = \mathop \smallint \limits_1^2 \frac{{x + \ln x}}{{{{\left( {x + 1} \right)}^3}}}{\rm{d}}x = a + b.\ln 2 - c.\ln 3\]với\[a,b,c \in R\], tỉ số \(\frac{c}{a}\) bằng
Biết rằng\[\smallint {e^{2x}}\cos 3xdx = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c\], trong đó a,b,c là các hằng số, khi đó tổng a+b có giá trị là:
Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện \[x.f({x^3}) + f({x^2} - 1) = {e^{{x^2}}},\;\forall x \in \mathbb{R}\]. Khi đó giá trị của \(\int\limits_{ - 1}^0 {f\left( x \right)dx} \) là:
Nếu \[\mathop \smallint \limits_0^\pi f\left( x \right)\sin xdx = 20,\mathop \smallint \limits_0^\pi xf\left( x \right)'\sin xdx = 5\]thì\[I = \mathop \smallint \limits_0^{{\pi ^2}} f\left( {\sqrt x } \right)\cos \left( {\sqrt x } \right)dx\] bằng:
Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)
Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt
Cho hàm số f(x) liên tục trên \[\left( { - \frac{1}{2};2} \right)\;\]thỏa mãn \[f\left( 0 \right) = 2\], \({\int\limits_0^1 {\left[ {f'\left( x \right)} \right]} ^2}dx = 12 - 16\ln 2,\int\limits_0^1 {\frac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}} dx = 4\ln 2 - 2\). Tính \(\int\limits_0^1 {f\left( x \right)} dx\)
Cho f(x),g(x) là hai hàm số có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\;\]và thỏa mãn điều kiện \[\int\limits_0^1 {g\left( x \right)} .f'\left( x \right)dx = 1,\int\limits_0^1 {g'\left( x \right)} .f\left( x \right)dx = 2\]. Tính tích phân \(I = \int\limits_0^1 {\left[ {f\left( x \right).g\left( x \right)} \right]} 'dx\)A.I=2
Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x = \frac{{m - \pi }}{{m + \pi }}\], giá trị của m bằng :
Cho tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} \frac{{\ln \left( {3\sin x + \cos x} \right)}}{{{{\sin }^2}x}}{\rm{d}}x = m.\ln \sqrt 2 + n.\ln 3 - \frac{\pi }{4}\], tổng m+n
Cho hàm số f(x) có \[f\left( 2 \right) = 0\;\] và \[f\prime (x) = \frac{{x + 7}}{{\sqrt {2x - 3} }},\;\forall x \in (\frac{3}{2}; + \infty )\;\]. Biết rằng \[\mathop \smallint \limits_4^7 f\left( {\frac{x}{2}} \right)dx = \frac{a}{b}(a,b \in \mathbb{Z},b > 0,\frac{a}{b}\] là phân số tối giản). Khi đó a+b bằng:
Cho hàm số f(x) có \[f\left( {\frac{\pi }{2}} \right) = 2\] và \[f\prime (x) = xsinx\]. Giả sử rằng \[\mathop \smallint \limits_0^{\frac{\pi }{2}} \cos x.f\left( x \right)dx = \frac{a}{b} - \frac{{{\pi ^2}}}{c}\] (với a,b,c là các số nguyên dương, \(\frac{a}{b}\) tối giản). Khi đó a+b+c bằng:
Giả sử tích phân \[I = \mathop \smallint \limits_0^4 x\ln {\left( {2x + 1} \right)^{2017}}dx = a + \frac{b}{c}\ln 3.\]. Với phân số \(\frac{b}{c}\) tối giản. Lúc đó :
Cho hàm số y=f(x) thỏa mãn \(\int\limits_0^1 {\left( {x + 1} \right)} .f'\left( x \right)dx = 10\)và \(2f\left( 1 \right) - f\left( 0 \right) = 2\)Tính \(I = \int\limits_0^1 {f\left( x \right)} dx\)